
3.4.2 (Not Quite) Casual Math. CyphrSeekr, the original CHEKOFV concept game, was
designed to allow players to describe the patterns they discovered as mathematical equations. In
Xylem, we continued with this core mechanic as we felt this approach – despite alienating the
less math-inclined of our potential audience – was productive for several reasons.
Perhaps most importantly, direct equation building allowed for a wide range of invariants to be
created and submitted. Each loop may have more than one possible invariant, and each invariant
collected would be useful to the backend processes that annotate the originating software.
Allowing players to construct their own equations opened up the flexibility to receive multiple
solutions for each puzzle while simultaneously taking advantage of the strengths of different
player skill levels and play styles. This created a customized challenge for each player depending
on their sophistication towards the game while taking best advantage of the strengths of crowd
sourcing.

In addition to direct gameplay ramifications, focusing the main game activity on building
equations had some practical aspects as well for possible future iterations. The framework is
easily expandable in the future to include more tools if needed/desired. Several tools appeared in
earlier versions of the game that were later removed to avoid confusing players. However,
allowing more sophisticated players to unlock specialized tools (such as the mathematical logical
construct, “implies”) remains a possibility for future expansion. The direct equation-building
approach also supports, in many situations, implementation of different data structures as game
levels without having to completely redesign parts of the game. Figure 21 illustrates some of the
evolving elements of styles and tools in early versions of Xylem.
A core tension of the game design was the desire to simultaneously have a large range of players
while also having a large expressive range for their observations about loops. At times it seemed
almost a one-for-one trade off between appealing to our desired audience and allowing for
greater expressibility of the tool set. Early versions of the game, for example, included tools such
as the mathematical symbol for the logical concept of “implies”. While this would have allowed
for a greater range of possible invariants that could be constructed, taking the time to explain the
concept of “implies” to someone unfamiliar with it seemed like it would bog down the game
flow and create a mental stumbling block. We ultimately decided that losing this bit of
expressivity was less important than supporting a wider player base. Even so, Xylem remained
sufficiently mathy, as it triggered concerns of math anxiety among some of our play testers.

31
Approved for Public Release; Distribution Unlimited

Figure 21. Evolution of introduction and play screens in Xylem

32
Approved for Public Release; Distribution Unlimited

3.4.3 Rewarding the Player in Xylem. An important part of games is receiving feedback.
Upon achieving a goal, players receive a burst of self-satisfaction. When goals are not achieved,
players still see how close they came and can track their improvement in skills. Either way, this
sense of achievement (or potential achievement) is an important part of what makes games
enjoyable and compelling.

Xylem posed an unusual problem when it came to offering players feedback. Essentially, the
game has no immediate way to gauge the utility or strength of a player-provided invariant. There
are no established techniques for ranking the difficulty of an invariant-finding problem, assessing
the quality of a solution, measuring incremental progress, or knowing when a problem is done.

In this situation, our task of designing game mechanics merged with the basic CS research into
invariant discovery/analysis. The only way to know for certain the usefulness of a given
invariant is to test it out on the original loop, in the context of a larger verification problem being
explored via the use of out-of-game software verification tools. This suggested that the only way
to provide feedback to players would be to have them submit their answers, wait some undefined
amount of time for a remote expert to test out their solution, and then provide scoring based on
this feedback. Thus, our early narrative design involved the players’ solutions being transmitted
to “The University” and players would continue playing other puzzles. The results would then be
received by telegraph some time later; see Figure 22.

Figure 22. Presentation of results scores in Xylem

Although this delayed-results technique was somewhat satisfactory from a narrative point of
view, traditional games don’t tend to work that way. We felt that this approach alone would not

33
Approved for Public Release; Distribution Unlimited

be satisfying for players but, in the early design stage of the project, we did not have any useful
heuristics to help us determine what a “good” invariant was.
Ultimately, we decided to use some simple parameters to provide immediate feedback, to reward
the player. For example, we knew that using as many of the variables in the loop as possible is
better than using fewer. We knew that utilizing the data from the time-zero iteration of the loop –
initialization values, constants, etc. – generally resulted in better invariants (these became
represented as the blue “bonus” tiles in the game). Furthermore, stating that one entity in the
invariant is equivalent to another entity is typically stronger than stating a less-than or greater-
than relationship. We also knew that we want to encourage players to come up with a variety of
invariants. With a lack of solid answers for how to give players feedback, we built our scoring
system on these four considerations. Figure 23 illustrates the player interaction screen.

Figure 23. Example of pattern solution for game instance in Web version of Xylem

3.4.4 Problem Difficulty and Shaping the Player Experience. One design challenge in
Xylem was how to craft the difficulty curve for each player. We examined several approaches to
estimate puzzle difficulty. One was to link the structure of a loop (visible to the front end) to
difficulty. More “guards” (conditionals in the loop) suggest more paths and potential for a more
logically complex invariant (if A then I1, if B then I2). However, it is unclear if this is true in
practice.
A second approach was to employ social ranking that is analogous to web-page ranking in some
search engines, as was noted in the CRS description in Section 3.3. If skilled players found a

34
Approved for Public Release; Distribution Unlimited

problem hard, it must be hard. If novice players solved a problem, it must be easy. This would be
useful for serving up solved problems to new players in a sensible order, but the issue of ranking
new problems remains open. Additionally, there is no firm basis for applying similarity metrics
(associating loop features with loop difficulty) to leverage social analyses. A third option was to
employ machine learning to classify problem difficulty from player ratings, but again, this is
stymied by a lack of understanding of the underlying feature base. All of these approaches
represent research into invariant-finding tasks; from the perspective of game design, it was easier,
and sufficient to employ heuristic measures.
The heuristic measure of difficulty was based on the experience of team members playing pre-
release versions of the game. We assume that integer-based problems are less difficult than
array-based problems. We assume that working with more variables is harder than working with
fewer variables. We assume that working with larger numbers is more difficult than working
with smaller numbers. Based on these assumptions, difficulty profiles are assigned to each
problem and problems are grouped by difficulty into different regions on the island.
Unfortunately, offering players a smooth difficulty curve with this approach isn’t possible. Other
factors – which are hard to test for, especially on a large scale – can influence how difficult a
given problem is. Therefore, a player could breeze through the first three problems in the “easy”
region, then encounter a very hard problem followed by another easy one. This does not make
for the type of hand-crafted difficulty curve that highly successful games can take advantage of,
and occasionally causes player confusion and frustration.
3.4.5 Teaching the Game. The tutorial development for Xylem began after the initial theming
and general concept of the game was pinned down. The task of getting new players on board
proved to be a massive challenge: presenting a problem this involved as an approachable, fun
experience that is easy to learn required much research, design, and iteration. The first versions
of the tutorial existed as paper prototypes, with which the designers were able to test different
ideas quickly and efficiently with many testers. Only through extensive testing and iteration were
we able to settle on a tutorial that effectively leads the player into the game while teaching them
the basic skills they need to know in order to succeed. The tutorial design and polish took place
in parallel with the core game design, requiring as much design time and effort as the rest of the
game combined. Early feedback from external game players indicate that the tutorial does
successfully train players to play the game, but is too long, a direct consequence of the many
game elements that need to be taught to the player. An early tutorial design document for the
game that became Xylem may be found in Appendix 4.

3.4.6 Aesthetic Experience. Xylem’s aesthetics were developed with the dual goals of creating
a pleasant place for the player to spend their time and creating consistency with the 1920’s theme.
Because Xylem was meant to be a slow, contemplative game (but with a hint of adventure), it
was important that the visuals and music fostered this atmosphere. A great deal of research into
map styles in the appropriate time period was done by our artist before the specific watercolor
look and map orientation was decided upon. (See Figure 24)

Likewise, our sound designer researched silent adventure movies and period jazz and classical
music to develop the ambient music pieces that play on the map screen and puzzle screens.

35
Approved for Public Release; Distribution Unlimited

Figure 24. Miraflora – the island setting for Xylem player's explorations

The photorealistic look of the game interface stemmed from initial design-space ideation
photography for the introductory desktop on the opening screen. This approach was further
developed and used for other in-game assets. At that point, we knew that we wanted a similar
look for the actual in-game UI. This direction added to the first person immersion of the game
and, when combined with the corresponding period sound effects, helped to create a strong
tactile feeling to the game that encourages players to manipulate the playing pieces.
3.4.7 Mobile Platform. The decision to adopt the iPad as Xylem’s target platform was based
on considerations of the chosen audience and how the game would most likely be played. In
particular, the iPad as a platform appeals to a wide variety of people – the majority of tablet
owners are between the ages of 35 and 44, and are spread equally amongst the genders, whereas
the smartphone user demographics skew a bit younger.
Given the contemplative nature of the gameplay, we imagined players playing the game while
sitting somewhere comfortable for at least thirty minutes. More than either a smartphone or PC,
the iPad has a form factor that encourages this sort of behavior. Additionally, given the number
of icons that we are asking players to work with, the extra screen real estate provided by the iPad
over the smartphone seemed ideal.
3.4.8 Considerations for Cooperative Play. A key vision for CHEKOFV was for players to
enjoy our game together; however, sorting out exactly how to achieve this was a long and

36
Approved for Public Release; Distribution Unlimited

involved iterative process. The situation was further complicated by the privacy concerns
associated with exposing individual player's personal information. Given the intended audience
and the emotional feel we wanted for the game, we opted for a collaborative scenario, albeit a
very light one. We wanted to create player investment by encouraging the feeling that all players
were working together towards some greater goal. It was important that players knew other
people were playing the same game at the same time. This was intended to support a sensation of
being “alone together”, which was seen to be more enticing to our target audience than the more
lonely feeling of interacting with a single player game.
It was also thought that the audience would be drawn in further to the fiction of the game, which
would help create an impetus for players to interact on the forums (in addition to helping each
other with hard problems). A complex backstory to the island was created, which was to be
revealed in a semi-random manner one clue at a time. Players were to collect clues, compare
them on forums, and discuss theories. The intended effect was a meta-layer of collaboration that
would occur outside the game itself to reward and draw in the core player base.
Design deliberations also considered sharing player-created resources. Though initial resource
constraints prevented its inclusion in the game, a feature for having players create and share
“helper functions” was designed. Such helper functions would make it easier to see relationships
among variables, or help subdivide larger problems into smaller pieces. Such capability would
require a new layer of user tools for composing, naming, exporting, and importing these tools.

Information about the outcomes from Xylem gameplay may be found in Section 4 – Results.
3.5 Phase Two: Citizen Science Games
3.5.1 Transition and Reimagination. As we approached the design of another CHEKOFV game
for Phase Two of the CSFV program, it became clear that we needed to rethink our assumptions
about the audience to which we were appealing. In game design (as in many things) the target
audience is the number one consideration that informs all design decisions, from game
mechanics to color scheme. With Xylem, our vision was to design a casual-type puzzle game.
Given the not-quite-casual math aspects of the game, we knew we were already limiting our
appeal but we attempted to make up for it with narrative, story, a tactile touchscreen UI and
aesthetics. However, we were obfuscating the science goals of the project, which was originally
thought was a positive thing. When combined with the sudden jumps in math-difficulty, this
alienating players who were otherwise drawn to it.
On the other hand, Xylem did attract a core group of very passionate players. We interviewed
several of these players about their experiences playing the game. From this work, it became
clear that our core audience was not the audience we had originally set out to capture. The most
avid players were software engineers who were intrigued by the software-verification science
goals of the project. They also felt that some of the work we were most proud of -- our narrative
and world-building components -- were distractions that got in their way. In particular, they were
keen to solve puzzles and feel like they were contributing to software security.
This player orientation was also confirmed by the marketing analysis of overall CSFV audience
activity on the Verigames website, which further revealed that the visitors were primarily
interested in the science behind the games, rather than the games themselves. In other words, the
publicity articles about the CSFV project were generally drawing a science oriented audience
who were interested in crowd-sourcing science projects, rather than the puzzle gamers originally
hoping for. Because the most prolific players of Xylem were computer scientists, and because our

37
Approved for Public Release; Distribution Unlimited

audience was turning out to be mostly people who were intrigued in the science aspect of the
project, we decided to take a very different tactic with our second game. In fact, we rethought the
notion of making a “game” at all.

3.5.2 Citizen Science and Safe Passage. A citizen scientist may be thought of as "a member of
the general public who engages in scientific work, often in collaboration with or under the
direction of professional scientists and scientific institutions." In other words, an amateur
scientist. (See www.en.wikipedia.org/wiki/Citizen_science).

Given our experience of the player interests and behavior with Xylem, we adopted a strategy of
appealing to and cultivating this audience for our Phase Two offering. Specifically, we set our
goals for experience as targeting a citizen scientist audience with a fun game that allowed
multiple players to collaborate on a single problem. From the CSFV point of view, the goal was
to create a game to compose and assemble conjunctive and disjunctive invariants, because this
process is difficult for automated systems to produce.

While these goals are fairly abstract, we were able to refine them by reasoning backwards from
the needs of the target audience and forwards from our experience with Xylem. In particular,
given that the target audience was motivated by the science goal, we chose to expose more of the
invariant-creation task to players than we had done in Xylem. To make the experience fun for this
audience, we realized that the accomplishments needed to be incremental and easy to perform.
That meant decomposing invariant creation into smaller steps than in Xylem, where each puzzle
required significant concentration and time. Nevertheless, our work on Xylem suggested a way
forward - if we could phrase invariant creation as data-driven task, we could define incremental
accomplishments in terms of the data examined or explained.
This line of reasoning produced a key insight; we could model invariant composition as the task
of separating good program states from bad. Here, a program state is a snapshot of variable
values describing some moment during program execution. For example, if the task is finding
loop invariants (as in Xylem), any state produced by the loop at a given iteration is good, while a
bad state is a vector of variable values that could never be produced by the loop at that time. If
the task is finding program preconditions, good states are inputs that satisfy program post-
conditions on execution, while bad states violate those post-conditions. This perspective opened
up a variety of game-design concepts; we could cast good/bad states as friends/enemies or
desirable/undesirable objects, etc., and design game mechanics around the task of selecting one
class, while defeating/rejecting the other.
The initial concept design for the Phase Two CHEKOFV game was called Safe Passage, and
employed the metaphor of distinguishing friends from enemies. Figure 25 provides early
sketches. The player is charged with preventing an influx of invasive species while encouraging
the preservation of native species. Triangles are traps that catch some creatures and not others.
Game play proceeds in two steps. In the first stage, the player places traps in sequence along
corridors, and introduces branch points into the maze. Then, when the player presses the “Run”
button, the fish and shells traverse the maze. They choose a direction at branch points, and pass
through, or are caught by traps en route.

38
Approved for Public Release; Distribution Unlimited

Figure 25. Early exploration of Safe Passage game concepts

39
Approved for Public Release; Distribution Unlimited

With respect to the underlying science task, each fish is an instance of a native species and
represents a good program state. Each shell represents an invasive species and a bad program
state. Each trap corresponds to a boolean predicate that acts on program states, and passes any
state/creature that evaluates to true. The set of possible traps are defined in advance. Sequential
traps create conjunctive predicates, while branch points in the maze create disjunctive predicates.
After the species run the maze, the game software reads out the expressions that characterize the
individuals caught in each trap, or that exit the maze. In a partial solution, some fish and some
shells are caught in certain traps, and some of each exit the maze. In the ideal situation, all fish
(all good states) make it through the maze, while all shells (all bad states) are trapped en route.
The very best mazes have fewer traps, suggesting simpler, more general solutions.
Safe Passage included a social mode of game play, where multiple users could collaborate on the
same maze or share sequences of traps. We anticipated running synchronous and asynchronous
team-based tournaments. We also envisioned an interplay between Safe Passage and a software
package (like Daikon) that produces the vocabulary of predicates/traps; it let the player request
new traps that would better separate the fish and shells already caught.

Our Phase Two design work substantially advanced our understanding of the constraints for
building software verification games. Table 6 summarizes the comparisons and lessons learned
during Phase One, and their implications for Phase Two. The most notable advances are in the
increased clarity on the intended audience, and in the style of the game that should appeal to
them.
It was also noted that our original game would benefit from affordances for a “wizard” or expert
human player, and also a software-based robot to remove puzzles that are evidently intractable
and hand them over to the experts for further study. The addition of such affordances was taken
into consideration for follow-on games, where they could also be used to introduce new puzzles
that were targeted to particularly successful players.

Safe Passage itself was never built out to the level of playable game, as we discovered new
issues and more elegant solutions during the design process. These new insights provided a
deeper appreciation of the citizen scientist audience, and a cleaner conceptualization of the data
segmentation task.

3.5.3 From Maze To Trees. As part of designing Safe Passage, we examined other games that
cultivate a citizen scientist audience and draw upon the "wisdom of the crowd'' by transforming
hard scientific problems into entertaining experiences [23] [24] [[25].
For example, FoldIt (https://fold.it/portal/), EyeWire (https://wiki.eyewire.org/en/Main_Page),
and Zooniverse (https://www.zooniverse.org/projects/) each provide clear tasks that let players
make small, but meaningful contributions. FoldIt calls on players to fold individual proteins,
while EyeWire asks players to identify neuron types, and trace interconnections from imagery.
The collection of projects in Zooniverse are at the boundary between Mechanical Turk tasks and
scientific discovery; players identify animals in photographs, classify galaxies, characterize bat
calls, annotate war diaries, and find kelp forests in satellite imagery, among other tasks.

40
Approved for Public Release; Distribution Unlimited

Table 6. Insights from original deployment of Xylem and their application in updating
Xylem and designing the new Phase Two game

Original%Version%of%Xylem% Xylem%Update%Plans% New%Phase%Two%Game%

The!audience!must!be!a!good!match!
for!the!level!of!difficulty!of!the!puzzles!
(and!vice!versa).!

Make!changes!to!attract/retain!
more!math!and!puzzle!players!

Hypothesis!that!audience!can!be!
increased!or!diversified!by!taking!out!
the!"mathyness"!of!the!representation!
and!replacing!it!with!other!visual!
representations.!

Xylem!is!not!a!“casual!game”!due!to!
the!complexity!of!the!puzzles.!

Make!changes!to!attract/retain!
more!math!and!puzzle!players!

Still!not!a!casual!game,!but!takes!the!
burden!off!of!players!to!come!up!with!
complete!solutions!de!novo!and!instead!
asks!players!to!tweak!proposed!
solutions.!

The!rate!at!which!the!complexity!of!
puzzles!increases!is!problematic!for!
players.!

Players!rate!the!difficulty!of!
puzzles,!which!will!in!turn!be!
evaluated!by!the!team.!Pass!
very!difficult!or!intractable!
puzzles!to!human!experts!

Intractable!puzzles!can!be!detected.!
Players!can!also!rate!difficulty!of!
puzzles.!

Initial!humanccentered!design!
research!during!the!early!phases!of!
design!was!used!to!help!to!tune!
original!targeted!audience!to!activity!
and!context.!

Midterm!design!research!
helped!remove!focus!from!
"casual"!players!and!switch!
focus!to!math!and!puzzle!
players.!

Since!we!are!at!the!beginning!of!this!
new!game!process,!we!can!do!some!
humanccentered!design!research!and!
also!create!and!test!mockups!and!
prototypes.!

A!Web!version!of!the!game!is!
preferable!for!serious!puzzle!players.!

New!version!of!Xylem!to!be!
ported!to!the!web.!

Webconly!game.!

The!narrative!must!be!compelling!and!
motivational!with!a!plausible!
connection!to!the!player’s!activity.!!

Remove!original!narrative!since!
engaged!audience!found!it!
irrelevant!and!annoying.!!

The!game!is!forthrightly!in!the!"puzzle!
game"!genre.!It!is!not!a!narrative!game.!

Peer!review!of!solutions!can!function!
as!a!motivator!for!play!as!well!as!an!
encouragement!for!social!interaction!
among!players.!

Peer!review!system!to!be!
introduced!in!Xylem!

Individual!puzzle!scores!can!introduce!
competition.!Filters!created!for!
particular!puzzles!may!be!traded!among!
players.!

For!social!interaction,!the!game!would!
benefit!from!inducements!and!
affordances!for!collaboration!as!well!
as!visible!indicators!of!competition.!

The!Peer!Review,!Prestige!
System,!and!Bona!Fides!
introduced!to!address!this!
challenge.!

Puzzle!scores!will!serve!as!indicators!
that!can!encourage!competition.!Players!
can!collaborate!on!puzzles.!Team!
competitions!will!also!be!designed.!

41
Approved for Public Release; Distribution Unlimited

On closer examination, FoldIt, EyeWire, and Zooniverse all share multiple features:

• they solicit players through their interest in the science task,
• they present the science task without any narrative elements or story skin,

• they provide players with a large number of simple tasks, and
• the players can solve each task quickly, and feel good with each result.

We corroborated these observations by interviewing Xylem players, who requested simpler
problems and more visibility into the science task (and complained about the absence of these
features in Xylem). In addition, players indicated a strong, de-motivating influence from the need
for a lengthy Xylem tutorial.

These interviews, and analyses of citizen-science games caused us to rethink the design of Safe
Passage. In particular, Safe Passage had none of the features in the above list: it disguised the
science task, it added an ecological narrative, each maze construction task appeared to be
relatively heavy weight, and the two-stage model of game play imposed a delay between player
action and reward. Moreover, the maze-construction task was sufficiently complex to require a
lengthy tutorial. As a result, we concluded that Safe Passage, as designed, would badly misfire,
and that we needed a simpler and more direct approach to a data-segmentation game.
Our core idea was to doff the narrative elements and phrase the game purely as a classification
task with the goal of distinguishing good program states from bad. In principle, this approach
would offer a cleaner design, and a simpler game mechanic that would enable rapid game play.
That said, we began to explore visual concept models for the classification task, as a means of
refining the game design.

The following sequence of sketches
(Figures 26a/b/c) chronicles the design
evolution during this period. Each
sketch carried a code name, e.g., The
Dance of the Restless Eagle.
Figure 26a expresses program states as
labeled circles (vs fish or shells in Safe
Passage), and displays the vector of
variable values corresponding to each
program state on the right.

In this example, each program state
contains values for four numeric
variables collected at successive
iterations of a loop. These states only
represent good data that is produced
by the loop, as the depiction of bad
states was not yet clear.

Figure 26a. Dance of the Restless Eagle

42
Approved for Public Release; Distribution Unlimited

Figure 26b, a month later, adds visual elements for good and bad program states, and reduces the
display of variable values to selected program states (the white box). This sketch also groups
states into sets characterized by a given filter, where each filter corresponds to a (possibly
complex) Boolean predicate. We imagined that players would generate these sets by applying
filters from a predefined list (shown in blue), but the mechanic for applying filters was not quite
clear at this stage of the design.

Figure 26c, another month later, clarifies the remaining elements of the classification model. It
depicts a binary tree, where each branch represents the application of a filter that segments the
program states present in the parent node into two sets, one containing states that pass the filter
and one for states that do not. The values of program variables are largely absent in this sketch,
while the filters are organized into a matrix of roll-over buttons that provide some indication of
their score (larger and brighter is locally better).

In this design concept, players act by selecting a node from the tree, and clicking on a filter.
They perform the science task by repeating that sequence.

As a whole, this mechanic is quite simple, resulting in rapid game play, and a minimal
requirement for any tutorial. This design sketch contains most of the technical elements that were
finally present in the next CHEKOFV game. While many art and user-interface elements continued
to evolve, the key remaining technical features concerned reward structure, and constraints for
managing screen real estate. Both of those proved important to the scientific value of the results
produced through game play.

Figure 26b. The Quest of the Black Opossum

43
Approved for Public Release; Distribution Unlimited

Additional features, such as the reward screen shown in Figure 27, were subsequently added in
the evolving game design that became Binary Fission.

Figure 26c. The Oath of the Burgundy Amoeba

Figure 27. Motivating players by acknowledging their achievements

44
Approved for Public Release; Distribution Unlimited

3.5.4 Binary Fission. Binary Fission employs a classification metaphor for finding invariants.
Although it applies to several forms of invariant finding tasks, our deployed version specifically
addresses precondition discovery. At the technical level, the game inputs a program annotated
with postconditions, a set of predicates relating program variables, and two sets of initial
program states (each state is a vector of variable values), where ``good'' states satisfy the
assertions, and ``bad'' states violate those assertions on program execution. Each Binary Fission
player employs the available predicates to find a classification tree that separates good states
from bad. This tree defines a logical formula representing a likely invariant.
At the game level, Binary Fission hides the nature of the program, states, and predicates from the
player. Instead, it presents players with a set of gold and blue nodes (representing good and bad
states, internally), mixed together inside a container. The player's goal is to separate the gold
from the blue using a set of filters (corresponding internally to predicates), which are capable of
partitioning the states. Different filters create different splits, and the player's job is to decide
which filters to apply, and in what order. The recursive application of filters leads to the creation
of a binary tree, as shown in Figure 28. Here, the conjunction of filters leading to a leaf node
characterize the states in that leaf, and the disjunct of expressions describing each leaf constitutes
the classification function defined by the entire tree.

Figure 28. The Binary Fission player interface
Playing Binary Fission produces classification trees. Players act by selecting a node from the tree,
and clicking on a filter, which bifurcates the selected node into two child nodes containing the
states that pass, or fail to pass the filter. The game offers the player several hundred filters to
choose from. The are presented in a rollover format, with visual feedback illustrating each filter’s
ability to separate good from bad states, together with its impact on game score. This format
allows players to rapidly search the space of possible filters, and generate many classification

45
Approved for Public Release; Distribution Unlimited

trees. This design is intended to provide citizen scientists with an undisguised science task, and
an easy to use interface that facilitates rapid progress and many incremental achievements.

Each classification tree produced through Binary Fission is typically partial: some leaf nodes
only contain good states, some only contain bad states, while others contain a mixture. In
addition, the solutions are idiosyncratic, as the players generally employ different subsets of
filters during game play. As a result, the game software combines descriptions of pure good
nodes and pure bad nodes across solutions to obtain a consensus view of the likely invariant.

3.6 Abstract interpretation, invariant learning, and crowd-sourcing
Binary Fission and Xylem form part of the suite of tools and techniques for invariant learning in
our overall system. As shown in Figure 29, they join Daikon and decision-tree learning as
invariant learning resources for CHEKOFV; other capabilities supported by the system are the
Artisan&Crafters interface for paid workers, and the published CHEKOFV Robot API, for use by
external automated-tool builders.

Figure 29 illustrates the iterative flow in CHEKOFV that supports the learning of likely invariants
to assist abstract interpretation, which is based on Frama-C Fusy, Value, and other related plug-
ins. The process takes a given terminating C program as input and returns either a proof of
correctness or a copy of the input program annotated with the learned invariants and a set of
assertions that could not be verified.

Figure 29. Abstract interpretation and invariant learning in CHEKOFV

46
Approved for Public Release; Distribution Unlimited

The procedure for program analysis consists of the following steps:

1. Initialize: At every program point, initialize the likely invariant to true, the sets of
good states and bad states to the empty set, and go to step 2.

2. Update1: Update the likely invariant at each program point using the abstract
interpretation provided by Frama-C. Terminate with success if all assertions are
verified. If the likely invariants are left unchanged, go to step 5.

3. Update2: Find new good states that lie outside the current likely invariant, and new
bad states that lie inside the current likely invariant. When found, add them to sets of
good and bad states at each program point. Else, go to step 5.

4. Update3: Use the current set of good and bad states to learn an invariant, using
machine learning and crowd sourcing. Update the likely invariant at each program
point using the newly learned likely invariants. If we fail to separate good and bad
states go to 5, otherwise go to set 2.

5. Terminate: End, with likely invariants as hints for the verification engineer.
Here are the different pieces of the above procedure, as implemented in CHEKOFV.

3.7 Frama-C Value plug-in
CHEKOFV abstract interpretation is undertaken using the Frama-C Value component. This plug-
in computes, at each program point, an abstract state that over-approximates the set of all
possible states the program may be in at that point. The abstract state is a mapping from every
memory location to the set of possible values that this location may currently have.
If the value is an integer, possible values are represented using an interval and a modulo as soon
as the number of such values becomes too large (small sets are represented in an exact way). If
the value is a floating point, only an interval is used.

Pointers in Value are represented using an interval per memory region where the pointer may
point. Frama-C generates a warning if it cannot prove that the execution of an (implicit)
assertion always succeeds from the current abstract state. If Frama-C does not generate any
warnings, then the program is provably safe and our analysis terminates.

If Frama-C fails to prove that the given program is safe, the program either has a genuine error,
or some of the abstract states were too imprecise to prove the program’s safety. To refine this
result, CHEKOFV try to learn likely invariants for each program point.
3.8 Sample concrete states
For a given program point in the input program, Frama-C computes a corresponding abstract
state. This abstract state, as depicted in Figure 30, contains a subset of good states and bad states.
Good states are program states from which the program terminates normally. Bad states are
(possibly unreachable) program states, which lead to an assertion violation. Further, the abstract
state may contain states that are not reachable but also do not violate any assertion and states that
are reachable but lead to non-termination (we do not handle non-termination). CHEKOFV now
tries to learn an invariant for this (abstract) program point that excludes all bad states and
preserves all good states.

Note that, if the program is actually unsafe, such an invariant cannot be established because there
exists a reachable bad state starting from this program point. That is, these invariants (when

47
Approved for Public Release; Distribution Unlimited

violated) can help the verification engineer to trace a safety property violation back to its origin.

Unfortunately, the set of good and bad states cannot be computed automatically (otherwise we
would not need abstract states), so CHEKOFV can only approximate the invariant that it is looking
for. To that end, CHEKOFV uses dynamic execution where available (i.e., test cases) or symbolic
execution to sample good and bad states. As sampling the good and bad states is only an under-
approximation, the likely invariants that we learn may be too strong or too weak. Hence, we may
need several passes through the program until we find a suitable likely invariant.

Figure 30. Example of an abstract state

3.8.1 Collecting states with unit testing. The most pragmatic way to collect program states is
the run the program analysis on concrete inputs and monitor the programs state during the
execution. This can be done either if the application under analysis comes with a set of test cases,
or by using randomized test input generation on isolated units. To that end, we implemented an
application similar to Randoop [26] that automatically generates test cases for each method in a
file. For each method, we generated several sets of test inputs, which are assignments to all
parameters that the procedure expects and to the global variables that may be used by this
procedure. As test oracle (i.e., to decide whether the test succeeds or fails), we used a simple
crash oracle; if the execution of the procedure on the generated input raises a segmentation fault
or violates a (implicit) run-time assertion, we marked the test as failed.
For each test (either provided or generated), we ran the application under analysis with a
debugger (gdb) attached. At each procedure entry, procedure return, and loop entry, we paused
the programs execution using the debugger and record the current value of all program variables
and stored them in a file. We automated this process using the Debuggers Python interface. If the
test case failed (either due to exceptional termination, or because the test oracle marked it as
failed), we added all collected states to the set of bad states. If the test succeeds, we add all states
to the set of good states.
As file format for the recorded states, we used the dtrace-format that was introduced by the
Daikon tool. Using this file format immediately allowed us to generate likely invariants using
Daikon and also made it easy to interface to other machine-learning-based invariant-discovery
tools like DTInv [14] or MCMC [27].
3.8.2 Collecting states with symbolic execution. For smaller the examples in our experiments,
such as TCAS (See Appendix 5) or certain modules of BIND, this dynamic approach for

48
Approved for Public Release; Distribution Unlimited

collecting states worked well and collected large quantities of good and bad states in a very
reasonable time. For other applications, however, this approach did not work well or could not be
applied at all. For example, for parts of BIND, the available regression tests only executed small
parts of the system, and randomly generating inputs for an application that modifies the file
system and accesses the network is not feasible. For the autopilot software in the Paparazzi
benchmark, we could not apply this approach at all, because the software only runs on ARM
architectures and thus, it is not possible to attach a debugger in the same way as for other
applications. For TCAS and other smaller benchmarks, however, testing turned out to be an
efficient way to sample good and bad states as we will discuss later.

3.9 Fusy plug-in for Frama-C
For those benchmarks where sampling states using testing was not feasible, we developed a
symbolic execution. The symbolic execution was developed as a plugin for Frama-C called Fusy.
To sample bad states, Fusy checks if an error state is reachable from any state in the abstract
domain of the current program point. That is, it turns the current abstract state, computed by the
abstract interpretation, into a precondition (or an assume statement) for the symbolic execution.
For each variable v with an abstract domain v ∈ [min, max], Fusy then adds a conjunct min ≤ v
≤ max to the precondition. If Fusy finds a reachable error state under this precondition, this state
is added to the set of bad states. If the program point being analyzed is the program entry, or if
we know that our precondition only describes reachable states, we have found a genuine error.
However, because CHEKOFV may insert a too strong invariant as intermediate result, the
symbolic execution of Fusy may fail because the set of possible states to start from is, for
example, empty. To avoid this problem, Fusy also checks if there exists a state outside the
current abstract domain from which an execution terminates normally. Here, Fusy proceeds in a
similar way as for the bad states but it computes a precondition for the complement of the current
abstract state. This step is important to prevent the machine learning from producing overly
strong likely invariants.

Fusy can also identify good states by symbolically executing the program from a given location
until the end. Because it only has to find one symbolic execution that terminates normally, this is
usually not prohibitively expensive, even for large programs. The bottleneck for this step was the
handling of loops. If symbolic execution had to unroll a loop that cannot be exited after a few
iterations, Fusy often got stuck if no invariant for the loop was present. To avoid this problem,
we implemented several optimizations in Fusy and in the overall CHEKOFV loop to handle loops
with priority.

49
Approved for Public Release; Distribution Unlimited

3.9.1 Extensions to symbolic execution. Fusy first searched the different loops of the program
or of a particular function. It attributed a unique number to each of them. This number had then
been used by all the components of the CHEKOFV architecture to refer to identify each loop.

For each loop, Fusy first sliced the
program to preserve the loop’s behavior
by removing all statements that were not
required to preserve the behavior.
Consider for instance the C program in
Figure 31. The slicing step generates a
new program that does not include the
marked statement because the variable z
is not necessary to preserve the loop's
behavior. That is, the slicing generates
smaller programs in terms of number of
statements and number of variables,
which makes it more admissible to the

symbolic execution in Fusy.
To ensure the correctness of the slicer (that is, not to remove useful statement), Fusy must
resolve pointers: for instance, if 2 pointers p and q are aliased and hence point to the same
memory location, and if *p is used in the loop under analysis, statements modifying *q must not
be removed.
For such pointer resolutions, the Frama-C slicer used the abstract states computed earlier by
Frama-C’s value analysis. Value analysis computed an over-approximation of all the possible
values of each variable (including pointers) of the program at each program point. All these
approximations are stored in an internal table and any Frama-C plug-in (e.g., the slicer) can then
ask for an approximation of the possible values of a particular variable at a particular program
point.
To generate sequences of values for the variables of each loop, Fusy performed symbolic
execution on each previously generated program by running Value Analysis. However, it might
be required to set some Value Analysis' specific options to be precise enough.

During this execution, Fusy modified the standard behavior of Value Analysis to track and
register each value of the variables used in a loop at the point of interest (before entering the loop
and after each loop iteration), whenever these values was precise enough.

When Fusy got the expected length of the sequence of values, it stopped the symbolic execution
to run faster. That is, the states computed by the symbolic execution only represent a fixed
number of executions of the loop body. While this may not be sufficient to find a proper loop
invariant that holds in a larger context, this step helps in practice to facilitate the generation of
good and bad states needed for the crowd sourcing.
3.10 Invariant learning
Once CHEKOFV has collected sets of good and bad states via testing or symbolic execution, it

int fact(int x) {
 if (x < 0) return -1;
 if (x <= 1) return 1;
 return x * fact(x - 1);
}
int main(void) {
 int x = 5; int y = 10;
 int z = fact(100);
// removed statement
 while (y > 0) {
 x++; y--;
 } return 0;

}

Figure 31. Example program to illustrate
Fusy's slicing functionality

50
Approved for Public Release; Distribution Unlimited

starts looking for likely invariants. Finding such likely invariant can be seen as a binary-
classification problem in machine learning. CHEKOFV is looking for an approximation of a
function that labels all good states as good and all bad states as bad at a given program point. The
connection between invariant generation and classification has been explored in many recent
works. While one of the key assumptions of CHEKOFV is that crowd sourcing can outperform
machine learning in this domain, we still applied machine learning to get some initial candidate
invariants and iterate the loop from Section 0 to collect additional good and bad states. To that
end, we used two machine-learning tools: Daikon [5] and DTInv [14].
Daikon takes a set of program states as input, and infers a logic formula that holds true for each
state in the given set. We applied Daikon separately to the set of good states and to the set of bad
states, for each program point for which we collected such states. As a result, we obtained an
initial set of likely invariants.
We also used DTInv, which is a decision-tree learner that takes a set of good states and a set of
bad states as input and generates an invariant that includes all good states and excludes all bad
states. Because DTInv performs a classification task, the invariants generated turned out to be
logically stronger than the invariants generated by Daikon, but they often over-fitted the desired
solution.

Later we discuss how we can crowd source this step using games. However, we emphasize that
the CHEKOFV algorithm theoretically can be applied purely using machine learning without any
crowd-sourced inputs. In this case, CHEKOFV will produce results that are very similar to the
ones of DTInv and MCMC. Being able to run the system start to end without using the crowd
sourcing was important to us because it allows us to efficiently evaluate and benchmark the
benefit of using crowd sourcing.

3.11 Closing the loop
After performing the initial abstract interpretation, collecting good and bad states, and learning
likely invariants using either machine learning or crowd sourcing, CHEKOFV has completed one
iteration of its process. The task now is to feed the newly learned likely invariants back into the
program under analysis.
To that end, we developed several plug-ins for Frama-C and other components. The key new
elements in this part of CHEKOFV are Invemerger, Quickcheck, and Hardcheck. The role of these
tools in the broader context of CHEKOFV is shown in Figure 32.

In Step 5 of this figure, the Game Server issues instance sets to Xylem or Binary Fission players.
Solvers explore the patterns presented, and provide potential invariants. Artisans & Crafters (the
expert solver web interface) and the Robot API may also be used to receive instance groups. The
solutions generated are passed to Invmerger and Quickcheck (step 6), which adds them to the
Hasse invariant lattice (step 7) to provide an initial ranking evaluation. Quickcheck returns this
result to the solver, and also draws upon the instance database source code information to
generate a .sav file for further invariant validation by Hardcheck (step 8). In step 9, Hardcheck
confirms or refutes the invariant, and updates Quickcheck with its findings. Refuted invariants
are transitioned back to Frama-C to generate more Fusy instances.

51
Approved for Public Release; Distribution Unlimited

Figure 32. Verification flow supporting multiple crowd-sourced tools

We now discuss each of these new components in more detail.
3.11.1 Invmerger. Invmerger is a Frama-C plug-in that inserts invariants learned by CHEKOFV
in the C program at their right places. Invmerger takes a list of pairs of invariants and labels as
input. The labels refer to Frama-Cs internal representation of C programs to ensure that the
location in the code is not affected when inserting or removing invariants from the code.
Further, Invmerger supports a special keyword slideNum which referred to the Fusy variable
corresponding to the number of loop iterations. This keyword can be seen as a ghost variable that
can be used by the games to allow players to build more expressive invariants. Invmerger can be
easily extended to use other types of ghost variables.
3.11.2 Hardcheck. The goal of Hardcheck was to verify each candidate invariant that has been
inserted in the C program by Invmerger. Hardcheck is primarily based on the Frama-C WP
(Weakest Precondition) plug-in to verify the candidate invariants. If Hardcheck succeeded in
proving that a candidate invariant is in fact an invariant, the invariant is left in the code. If
Hardcheck failed to prove that a candidate invariant is an actual invariant, it tried to generate a
counter example that witnesses why that the candidate invariant can be violated. Such a counter-
example is a sequence of program states along a control-flow path from an entry point of the
analyzed program to the location where the candidate invariant has been inserted, such that the

52
Approved for Public Release; Distribution Unlimited

candidate invariant is violated when reaching that location. That is, we can add this counter-
example immediately to the sets of learned program states and remove the candidate invariant
from the program.
The Frama-C plug-in WP is based on Dijskra's Weakest Precondition Calculus. For each
program property to be verified, this analysis technique generates one or several so-called proof
obligations (PO). If all POs are verified, then the corresponding program property is verified.
These POs used to be verified by other means (usually either automatic theorem provers or proof
assistants). In CHEKOFV, we relied on the automatic theorem prover Alt-Ergo.
Weakest precondition calculus is a modular-analysis technique. Thus WP analyzed a single C
function f without the implementation of the others. However, if f calls another function g, WP
requires a contract (i.e., specification) for g to reason about f. If the function g has no
specification, it is not possible to prove anything interesting about the function f. Because writing
such specifications by hand would contradict with the goals of CHEKOFV, we chose to inline
every function call that WP needs to examine to generate the POs of all the loop invariants. This
inlining step is done prior running the above-mentioned algorithm.

3.11.3 Generation of Candidate Counter-examples. Some automatic theorem provers, in
particular Alt-Ergo, are able to generate a 'counter-model' when they conclude that a given proof
obligation is not valid. This counter-model explains why the property is not satisfiable using uses
the prover's internal logic constraints.
From this prover's counter-model, the plug-in 'Counter-example' generates a new function 'main'
for the C program in order to express the logic constraints according to the input variables of the
C program.
Running this C program from the new function 'main' should violate the unproved property.
However, there is no guarantee that the prover's counter-model does violate the property and thus
that the generated counter example does violate it. Indeed, it used to not be the case if the prover
reaches its timeout before either validating or invalidating the property: here its returned counter-
model is just its current state and there is little chance that it is a true counter-model. Thus
Hardcheck tried to check that the generated counter example is a real one.
Hardcheck used Frama-C Value plug-in to validate candidate counter-examples. It ran the new
program from the generated function 'main' and checked the validity status of the relevant
candidate invariant. Because the input was very precise thanks to the plug-in Counter-example
(the function 'main' initializes all required inputs), it should be possible to get precise analysis
results as soon as Value is configured enough.

3.11.4 Quickcheck. Checking invariants with Hardcheck was expensive. The step required
several calls to a theorem prover, which can take several seconds or even minutes. In particular
due to the inlining of procedure calls, Hardcheck often took very long to provide an answer.
Hence, checking each candidate invariant immediately with Hardcheck would have been
prohibitively expensive. In particular, because it is to be expected that many players provide
similar or even equivalent solutions to the same problem.

We also developed a tool called Quickcheck to perform a cheap analysis of the candidate
invariants returned by players of the games to decide if Hardcheck should be employed to check
the invariant, or if we already have a better solution. Quickcheck uses a partially ordered directed

53
Approved for Public Release; Distribution Unlimited

graph known as Hasse diagram to maintain a set of candidate invariants for each program point.
See Figure 33.
Initially, the set contains only the trivial candidate invariants True and False. Because all
invariants refer to the same program point, they are over the same set of program variables and
thus they have an implicit partial ordering over logical implication. That is, given two candidate
invariants A and B, they are equal in our partial ordering if A=>B and B=>A, if only one
direction holds we know that one dominates the other, and if neither holds, they are unrelated.

In this figure, we can see that false is the source because false implies anything, and true is the
sink because anything implies true. In this example, the candidate invariant C3 implies C1 but
not vice versa, C5 implies C2, and neither of the others imply each other.
The Hasse diagram is used to prevent CHEKOFV from performing redundant invariant checks. If a

new invariant is received, we first check its
position in the Hasse diagram. This check is
cheap because it only requires checking logical
implications of candidate invariants.

Once the position of a new candidate invariant
has been found, Quickcheck checks if this
invariant is stronger (i.e., implied by) than
known candidate invariants for which WP
already has concluded that they are too strong
to be program invariants, or if this invariant is
weaker (i.e., implies) than candidate invariants
that are known to be too weak. In both cases,
Quickcheck concludes that checking this
candidate invariant is not necessary. If
Quickcheck establishes that the new candidate

invariant is logically equivalent to a known candidate invariant, it also discards it. In any other
case, Quickcheck adds the candidate invariant to the Hasse diagram and calls Hardcheck to
establish if it is a true invariant, too strong, or too weak. Figure 34 depicts part of a Hasse
diagram, with more detail about the relationships among individual candidate invariants.

Figure 33: Example of a Hasse diagram
for categorizing candidate invariants

Figure 34. Hasse diagram of relationships among sample candidate invariants

54
Approved for Public Release; Distribution Unlimited

Quickcheck was able to prevent a significant amount of redundant computation and also
provided interesting insight on the type of candidate invariants provided by players. For
debugging purposes, we also added a time lapse to replay how new candidate invariants are
being analyzed by Quickcheck and how the Hasse diagram evolves over time.
3.12 Analysis Termination
The analysis terminates either upon system verification or when one of following failures occur:
– Failure to find new good and bad states: Symbolic execution can fail to find new states. This
may happen because the problem of finding good and bad states is undecidable in general and
very expensive in practice. In this case, we terminate with the last learned invariants as a hint for
the verification engineer.
– Failure to classify good and bad states: For crowd sourcing this may happen because the games
do not have enough players, or the needed invariant is not expressible with the tools offered by
the game. The latter case is equivalent to the case where a machine learner fails due to the choice
of the kernel functions. Assuming that the language of the game or the kernel function of the
machine learner are strictly more expressive than the abstract domain of Frama-C, we can
terminate reporting the last learned invariants.
– Failure to improve abstract domain with the learned invariants: This may happen because the
language of the likely invariants is more expressive than what can be expressed in the abstract
domain. In this case, we know that there are bad states that cannot be excluded in the current
abstract domain and we can report a warning that the current abstract domain is not sufficient to
verify the program.

3.13 Sample Plug-in
To collect data about the candidate invariants provided by players, the progress of the
verification, and the performance of our tools, we developed several plug-ins and tools, the most
important of which was Sample.

Sample is a Frama-C plug-in developed in the context of this project. Its function is to extract a
concrete state from the results of a Value analysis. This concrete state can then be tested to
determine if it is actually reachable or if it has been produced by an over-approximation. In the
latter case, it may be possible to improve the analysis by adding specification statements to the
code, which exclude this unreachable state from the analysis. That is, the plug-in does not output
a concrete state but a sample.

For a given tuple of C expressions, a sample is a corresponding valuation of these expressions in
a chosen control point of the program. These valuations can either be reachable values from the
real program or unreachable, i.e. the result of some over-approximation during the analysis.
The plug-in is invoked through the command line. The user must supply a statement identifier
where the sampling has to be done and the variables that have to be sampled. For reproducibility
reasons, the seed used by the random number generator can also be provided. When several
samples are needed, the user can supply a file in comma-separated-values (CSV) format of
previous samples. These sample will be excluded from the possible outputs, and the plug-in will
produce, when possible a new sample.
The CSV file must start with a line containing the variables sampled, separated with commas. In
case this line is not exact, Sample will give the expected line. Each following line must have the

55
Approved for Public Release; Distribution Unlimited

same number of values (one for each variable) separated by commas. The plug-in will check that
all these numbers are valid integers or floating-point numbers, based on the variable type.
We use the result of the Value plug-in execution. This result describes, for each variable of the
program, a set of possible value. For integers, if this set is small enough, it is given explicitly,
otherwise, it is given as an interval with modulo information. For floating points, it is always
given as an interval. The plug-in can also compute such sets for expressions: it combines the
information it has about each variable of the expression and deduces a set of values for the
expression. We then sample a value in these sets in a way described in the next paragraph.
The plug-in integrates custom pseudo-random number generators to generate integers and floats.
In general, the sampling of values doesn't follow a uniform distribution of number among the
reachable values. There is only one exception. When the set of possible values for an expression
is small enough, say less than ten, the value is selected uniformly between those values.
Otherwise, the value is randomly chosen in the following way. If the value can be either positive
or negative, its sign is chosen with equal probability. Then, a positive or negative interval of
possible value is built from this choice and a number is generated in this interval, non-uniformly
once again. For instance, for integers, the integral base two logarithm (the number of significant
bits) is chosen first. Then a number with this logarithm is uniformly picked.

3.14 Plug-ins for CWE progress metrics
We developed two additional Frama-C plug-ins to evaluate the progress of the verification effort
in terms of the CWEs that were to be checked. Frama-C automatically inserts run-time assertion
into the analyzed code for the CWEs 120, 134, 190, and 476. Other CWEs such as 250, 306, 434,
672, 732, 807, and 863 that depend on domain knowledge can be added by hand. The
verification progress can now be measured by counting how many of these assertions can be
verified and how many assertions are rendered unreachable by the generated invariants.
The first plug-in that was developed collects all warnings emitted by the Value plug-in of
Frama-C and stores them in a database in a way that these warnings can be queried by category
or by location in the source code. Before adding invariants to the code, most of these warnings
will be false alarms that are generated because the value analysis lost precision while analyzing
the program. As we add invariants to the program, the number of warnings is expected to
decrease because the value analysis becomes more precise. The main goal of this plugin was to
identify hotspots where the CHEKOFV failed to improve the precision of value analysis and take
appropriate measures.
The second plug-in that we developed collects all statements in an analyzed program that are
considered unreachable by value analysis. Similar to the previous plug-in, all unreachable
statements are stored in a database. This plug-in was necessary to identify the impact of overly
strong invariants. For example, an invariant that strongly constrains input variables may
eliminate many value-analysis warnings by rendering parts of a program unreachable. To get an
accurate view of the progress of the verification in CHEKOFV, we used this plug-in to weigh the
number of verified assertions against the number unreachable statements.

The resulting metrics from an exploratory case study using the BIND source code are reported in
Section 4.5. While these metrics features are not part of the final integrated system, they provides
valuable insights for the development of CHEKOFV, and for spotting bugs during integration.

56
Approved for Public Release; Distribution Unlimited

4. RESULTS AND DISCUSSION
To showcase the capabilities of the CHEKOFV system, we carried out two case studies to detect
two known security vulnerabilities – the Heartbleed bug and a recent critical bug discovered in
BIND. We detected these bugs under lab conditions. We already knew where the bug was
located, and isolated the relevant program parts accordingly. After the case studies, we discuss
the progress and problems we observed when applying CHEKOFV to the applications BIND and
Paparazzi. Both are large-scale real world applications that are challenging to any form of
program analysis.
This is followed by a summary of our work on state-space metrics, and a feasibility study of
Xylem using SV-COMP verification benchmarks. Next, we report on insights gathered on the
benefits of using crowd sourcing compared to existing machine-learning techniques, which is
based on data collected from applying CHEKOFV tools to the standard verification benchmarks.
At the end of the section, we provide some player productivity data for Binary Fission.

4.1 Case Study 1: OpenSSL – Heartbleed Bug
We explain how CHEKOFV works by dissecting the well-known Heartbleed bug in OpenSSL. The
code snippet that caused the bug is sketched in Figure 35. For space reasons, we omit a few lines
that are not relevant to understanding the bug.

The bug is a missing bounds check in the heartbeat extension inside the transport layer security-
protocol implementation. A heartbeat essentially establishes whether another machine is still
alive by sending a message containing a string (called payload) and expecting to receive that
exact same message in response. The bug is that, although the message also contains the size of
this payload, the receiver does not check if this size is correct. Therefore, an attacker can read
arbitrary memory by sending a message that declares a payload size that is greater than the actual
message.
Figure 35 shows the part of the code that processes a heartbeat message. On line 3, the pointer p
is set to point to the beginning of the message. Then, on line 8, the message type is read, and on
line 9, the size of the payload is read through the macro n2s which reads two bytes from p and
puts them into payload. However, because the whole incoming message might be controlled by
an attacker, there is no guarantee that this payload really correspond to its actual length and there
is no check in the code. Payload might be as much as 216 − 1 = 65535. Line 10 then puts the
heartbeat data into pl.
In line 15, a buffer is allocated and its size is actually as much as 1 + 2 + 65535 + 16 = 65554.
Then lines 18 and 19 fill the first bytes of the buffer with the type and the size of the response
message. Finally, line 21 attempts to copy the heartbeat data from the incoming message to the
response through a call to memcpy. Because the payload can be longer than the actual size of pl,
nearby memory data (included potential confidential user data) may be inadvertently copied.

Frama-C can detect this bug. It adds an implicit assertion just before the memcpy that bp and pl
must be at least of size payload. Because it cannot prove this property, it warns about a potential
bug. However, because this is not the only warning emitted by Frama-C, chances are it will go
unnoticed.

57
Approved for Public Release; Distribution Unlimited

Figure 35. Faulty code that processes a heartbeat message in OpenSSL.

Let us now see how our approach can make it easier for a human analyst who is using Frama-C
to notice this bug. First, even if it does not appear in Figure 35, p is fixed and equal to SSL3 RT
HEADER LENGTH. Starting with the abstract state computed by value analysis at line 10, the
abstract state looks roughly as follows:

hbtype ∈ [0, 255] (a one-byte positive integer)

payload ∈ [0, 216 − 1] (a two-byte positive integer)

sizep = SSL3 RT HEADER LENGTH − 3

padding = 16

For readability, we use this abbreviated version of the abstract state computed by Frama-C. The
actual abstract state would contain a lot more information about the input parameter s, about the
value of p, pl, and about other global variables. The important thing in this abstract state is that
payload can be an arbitrary two-byte unsigned integer, while the size of the allocated memory for
pointer p is fixed and equal to SSL3 RT HEADER LENGTH − 3.
Because none of the variables in the abstract state depicted above are modified by any statement
until line 21, these variables will have the same intervals. Hence, the implicit assertion that
payload ≤ sizep which is required by memcpy does not hold.

Now, we use symbolic execution to refine our abstract state just before line 10. We pick this
program point because it assigns a value from an unknown source to a variable. CHEKOFV refines
all states where we receive unknown inputs (user input, files, network, and so forth), or we lost
information due to widening (e.g., after loops).

58
Approved for Public Release; Distribution Unlimited

First, we collect bad states that lead to assertion violations. To that end, we construct a
precondition that ensures that the symbolic execution may only pick initial values that are in our
current abstract state. The symbolic execution will then search for concrete states from which the
assertion can be violated. Next, we need to collect good states from which the assertion is not
violated. We can either use the same symbolic execution approach that we used to collect bad
states or fall back on data from previously recorded test cases, if available.

Figure 36 shows the distribution of the collected data points for payload and sizep. As discussed
above, all good states (depicted by a plus sign) are states where sizep is greater or equal to
payload. All bad states (shown as a minus sign) are states where payload is greater than sizep.
Using these data points, we can now employ our crowd-sourcing games (or a machine learner) to
find a classifier (that is a likely invariant) that separates the good states from the bad states. The
ideal classifier would be payload ≤ sizep. However, let us assume that our symbolic execution
picked extreme values and we get an over-fitted invariant 2 ∗ payload ≤ sizep.

Figure 36: Distribution of data points for payload and sizep.

We merge the invariant 2 ∗ payload ≤ sizep into the program at line 10 and re-run our value
analysis. The invariant refines the abstract state at line 10 such that payload is in the interval [0,
sizep/2]. Hence, the assertion violation in line 21 is now gone and we know that we cannot find
new bad states that violate this assertion. However, we still have to ensure that the inserted
invariant did not throw away too many good states. Thus, we start our symbolic execution again,
this time with the precondition that the invariant does not hold (i.e., 2 ∗ payload > sizep and thus

the abstract value of payload is [size p/2 + 1, 216 − 1]). This reveals new good states that ensure
that we cannot find the same invariant again. This loop is repeated until we cannot find new good
or bad states. We mark likely invariants where this is the case as potential solutions. However,
we do not stop the crowd sourcing immediately because there might be several invariants that
have this property.

59
Approved for Public Release; Distribution Unlimited

Eventually, CHEKOFV finds the invariant payload ≤ sizep for line 10 which is sufficient to prove
the assertion in line 21. We cannot actually prove that this is an invariant (in fact it is not an
invariant because there is a bug). It is a likely invariant that helps the verification engineer when
verifying the program.
4.2 Case Study 2: BIND – CVE-2015-5477
Our second case study tried to use CHEKOFV to find a recent critical bug discovered in BIND,
which was reported July 28, 2015. Similar to the Heartbleed bug in the previous case study, this
bug can be exploited by an attacker by sending manipulated packages to BIND. Even though the
bug does not immediately leak confidential information as does Heartbleed, it can still be
exploited to shut down BIND remotely, acting as a denial-of-service attack.
Figure 37 shows the code snippet from BIND that is relevant to the vulnerability. In the method
dns_tkey_processquery in tkey.c, BIND handles a message received from the network. To that
end, it uses the method dns_message_findname to extract information from the received message.
One of the arguments to dns_message_findname is a piece of memory called name where the
method can write its response.

Figure 37. Code snippet illustrating the vulnerability in BIND

To ensure that dns_message_findname does not overwrite received data, it asserts that this
variable name points to unused memory (see line 2352 in Figure 37). The problem is that
dns_message_findname might be called twice in tkey.c: first in line 650 and then again in line
657, depending on the content of the received message. However, the variable name is not being
reset after the first call and thus, the assertion may be violated by appropriate input.

Figure 38 shows how CHEKOFV sampled data in our case study. CHEKOFV treats the method
dns_tkey_processquery as an entry point (because it is reachable from network input), and starts
sampling good and bad states using symbolic execution (because we assume that there is no test
case witnessing this bug, otherwise it would have been fixed earlier).

60
Approved for Public Release; Distribution Unlimited

Figure 38. Example of how CHEKOFV samples data for invariant learning.
As sample points, CHEKOFV uses the entry and exit point of dns_tkey_processquery as well as
one point before and after each method call inside dns_tkey_processquery (including the points
before and after the calls to dns_message_findname). Figure 38 shows a simplified version of
what the collected data may look like for the sample point before line 657. The value result must
be NOTFOUND, otherwise, the line would not be reachable. The value of msg can be arbitrary
(for both good and bad states), and the value of name must be null for all good states, and can be
anything other than null for all bad states.
Figure 39 shows how CHEKOFV learned an invariant from the sampled data. The good and the
bad states separately are processed by Daikon and passed to Xylem to find predicates
summarizing these sets. Then, the good and bad states, together with the set of learned predicates,
are passed into a decision-tree learner and Binary Fission to find the likely invariants.

Figure 39. Learning invariants from sampled data.

61
Approved for Public Release; Distribution Unlimited

For our example, CHEKOFV easily identified the invariant that name must be different from null
before line 657. Because this invariant does not hold, symbolic execution can find a counter
example that exposes the vulnerability.
4.3 BIND Analysis
During the project, it became clear that analysis of the entire BIND source code base was
essentially out of reach for the current generation of Frama-C analyzers. This challenge code
base also posed significant problems for the game-instance generation and results-integration
parts of CHEKOFV. However, there were several valuable insights in this work, outlined in the
next section, which were drawn from our work with certain subsets of the code. Subsequent
sections discuss a number of the core challenges encountered with the BIND code base.

4.3.1 Research Contributions from BIND Analysis. Key findings that emerged from our
work with certain subsets of the BIND codebase include:

- Unit Tests: These are a simplified setting, as they are supposed to have all values
deterministic. This is not the case in practice, e.g., because of imprecision of our
modeling of functions in the C library or of the testing framework, or because some of
the loops could not be completely unrolled without a prohibitive cost. Despite these
problems with the simplified settings of unit tests, we determined the correct process for
replacing the custom allocator by standard malloc/free calls in this setting. We were able
to improve the completeness of our C library stub, as well as its accuracy.

- Small Binaries: The main binary of the BIND code base is the named binary that
implements the name server. However, BIND also includes a number of other "small
binaries", for example a series of command-line utilities. Using the work done on the unit
tests, we were able to successfully analyze many of them (genrandom, arpaname,
nsec3hash,...). Unfortunately, these binaries did not contain an adequate selection of
comprehensive loops that could be used for game-level instance generation.

- Modular Analysis of BIND Code: Instead of starting from main, we ran Value starting
from all the functions of BIND that contained loops, in a restricted setting where
arguments to functions could not alias each other. We stopped the execution after a two-
minute timeout. About half of the functions were successfully analyzed using this setting.

Additional new tools and techniques developed in this work are described in Sections 5 and 6.

4.3.2 Large code base. The size of the source code for the main BIND binary (named) is very
large, which implies that a whole-program analysis takes a long time. This is especially the case
for value analysis, where function calls are handled using in-lining. The result was a significant
difficulty in debugging the analysis; as the analysis did not terminate, it was difficult to
understand what went wrong. In particular, the loss of precision when analyzing named appeared
after several minutes, which made the cycle modification/test lengthy.
4.3.3 Precision loss. As a complex project, BIND defines a lot of data structures. Some are
implemented using tagged or discriminating union, i.e. a given region of memory may have
different, unaligned contents, depending on the value of one field, the tag. It is important to keep
the different cases separated according to the value of the tag; else the possible values of the
fields in overlapping memory locations are misinterpreted, and the precision loss becomes large
(e.g. when mixing pointers and integers).

62
Approved for Public Release; Distribution Unlimited

If the path-sensitivity of Value allows it to separate these cases inside of a function, the fact that
all states are merged on each function return means that we could not avoid merging unrelated
values, and thus, this precision loss.
A solution would have been to add relational invariants describing that the value of some fields
depend on the value of the tag. But these are difficult to add to the current memory model of
Value, for which the fact that abstract values are non-relational is a fundamental assumption (the
memory model associates to each memory location a set of value, which prevents storing
relations between memory locations).

However, trying to combine this modeling (memory location -> set of values) with relational
information between the values led to interesting results in the design of the Codex analyzer.

4.3.4 Custom memory allocator. Several of our value-analysis problems were exacerbated
due to the use of a custom memory allocator in BIND. By nature, a custom memory allocator
uses the same memory region to store multiple pieces of information, and uses discriminating
unions everywhere; this means that a slight imprecision in the allocation leads to a
disorganization of all the heap-allocated memory content. For example, in a conditional, if one
branch does an allocation while the other does not, there is an imprecision in the index and the
contents of the heap quickly becomes completely imprecise.
The most practical way we found to handle this problem was to replace this custom allocator
with q standard call to malloc and free, which are handled directly by Frama-C internal
primitives. However, the interface of this allocator is large and correct handling of it required a
large effort. Even with this effort, the memory model used by Value assumes a finite number of
memory allocations, which still leads to dynamic allocations done in loop and dynamic
allocation of an unknown size being handled imprecisely.
4.3.5 Recursion. Frama-C uses a finite memory model, so that essentially local variables can
be allocated at most once, like global variables. It also uses dynamically in-lined procedure calls
to every function. The result is that recursion cannot be directly supported by the analyzer.
Approaches to handling recursive cases are either to rewrite the affected functions by hand, or
introduce an ANSI/ISO C Specification Language (ACSL) function contract to be used by the
recursive calls. Both of these solutions require a deep understanding of the code under analysis.
Undertaking this manual work for BIND was unrealistic within the scope of the project. On this
project, we developed a syntactic recursion-detection tool that detects connected components in
the syntactic call graphs (i.e., that ignore calls occurring through function pointers). This tool
found 28 distinct connected components, often with 8 functions inside the connected components.
However, building an ACSL specification for large connected components is difficult, because it
must summarize accurately the action of a large chunk of code, and is therefore a difficult
undertaking. Furthermore, such contracts often need to address recursive data structures such as
red-black trees. While these can be expressed in ACSL through the use of logic functions, value
analysis is not equipped to use them.

Finally, it is likely that syntactic recursive components are just a small part of the BIND
challenge. Because BIND uses function pointers extensively, it is possible that our tool
overlooked many potential recursive components. For example, a significant recursion error that
we encountered was a recursive call to isc_assertion_failed, where the assertion check routine
called an error routine through the use of a function pointer, that itself contained assertions.

63
Approved for Public Release; Distribution Unlimited

4.3.6 Precision loss due to ACSL. We were unable to use a function definition for various
reasons, including the recursion challenges and the excessive time needed for analysis. We also
had to deal with external libraries whose code was not available or was not relevant for the
analysis of the core BIND source code.

The result was to introduce ACSL specifications as a way to avoid expansion of parts of the
program. However, writing ACSL stubs requires an understanding what the code does, to define
an abstraction of its behavior. Unfortunately, sometimes ACSL is too imprecise for that purpose.
In particular, ACSL does not distinguish between "possible" and "certain" stores, and thus
performs imprecise weak updates in many cases.
In general, when evaluating an ACSL specification, one has to assume the worst, which leads to
imprecise results. For instance, ACSL allows stating that a memory location contains a value
computed from two pointers. Unfortunately, in the worst case it is possible to "mix up" (e.g.,
using a xor) the values of the pointers, which leads to an imprecise value that Value cannot
eliminate. These problems occur frequently, particularly given BIND's use of complex data
structures (and thus, many pointer manipulation).
4.3.7 Summary of BIND analysis. Our extended analysis of BIND indicated that whole-
program analysis, like Value, works poorly with such a large code base. Further observations
may be found in Section 5 – Conclusions. It also became clear that, to address elaborate systems
like BIND, we need to eliminate some of the fundamental limitations of our tools, in particular
the finite memory model and the intra-procedural trace partitioning. Some future directions for
this tool development are outlined in Section 6 – Recommendations.
4.4 Paparazzi
4.4.1 Overview. Paparazzi is a complete system of open source hardware and software for
Unmanned Aircraft Systems (UAS), which is composed of both airborne autopilot and ground
control components. The ground station component includes mission planning and monitoring
software, and utilizes a bi-directional data link for telemetry and control. The autopilot is written
in C; part of the code is generic and compiled in libraries; other parts are compiled after
generation from a GUI (written in OCaml). Beyond the obvious safety and security critical issues,
Paparazzi was selected for CHEKOFV analysis for the following reasons:

• It has a large code base (200K lines of code), with many interesting patterns to analyze.
• The code is embedded, which is generally simpler to analyze. For example, embedded

code usually does not feature recursion or dynamic allocation, which are not handled by
Value. Value has a large record of successful analyses in embedded C code.

• The C code in Paparazzi consists in several different configurations that are assembled
from different components, each of which are typically much smaller than 200kloc.

We successfully completed the analysis of all configurations of Paparazzi that were selected. In
all cases, the analysis time was relatively short, at worst several minutes.
The main issue when analyzing Paparazzi was parsing. The compilation of a complete Paparazzi
autopilot happens in two steps, where one part of the code is written "by hand", but uses
preprocessing directives to handle different configuration. The other part of the code is generated
and compiled by the GUI after selection of the configuration options.

64
Approved for Public Release; Distribution Unlimited

4.4.2 Results. Our difficulty was to get the source code with the correct configuration option.
A generated file was identified that contained most of the configuration necessary, from which
we could semi-automatically write a Makefile from it.
Our analysis addressed the following Paparazzi source code configurations (fixed wing or
helicopter, different system boards...):

- Microjet :: A fixed wing aircraft using the LPC21 board.
- Bixler :: A fixed wing aircraft using the STM32F1 board.
- Booz2 :: A quad-rotor using the STM32F1 board.
- Quadlisam2 :: Another quad-rotor using the STM32F1 board

The results are summarized in Table 7. The analysis was relatively fast in all cases. The number
of alarms remained important and could have been reduced by unrolling more loops in the
analysis. However, this would also have meant less interesting levels for the game players, so we
set the trace partitioning and loop unrolling parameter to a small value ("-slevel 10").

Table 7. Analytical results for four Paparazzi configurations

Configuration% Time% Number%of%alarms% Number%of%analyzed%statements%

Microjet% 16.3s! 121! 5029!

Bixler% 18.3s! 427! 5660!

Booz2% 217.3s! 590! 5720!

Quadlisam2% 34.6s! 900! 6085!

4.4.3 Paparazzi Problem Identified. In the "Booz2" configuration, in src/sw/airborne/led.h,
there is a led_init() function, which calls a lot of LED_INIT macros, one of set translating to:
((gpioRegs_t *)0xE0028000)->dir1 |= (unsigned long)(1 << 31);
This code is incorrect, as 1 is signed, 1 << 31 results in a signed overflow which is an undefined
behavior. The correct replacement is ((unsigned long) 1 << 31), or (1UL << 31).

As this is an undefined behavior, the compiler is free to compile code that uses this expression
arbitrarily. However, this bug is quite common, and in practice the code is compiled as expected;
however a compiler that would be "too smart" (for instance using the LLVM pass that uses value
information from the Value plugin) could do something wrong.

This problem was reported to the Paparazzi coordination group.
4.5 Cardinal of the state space metrics
As discussed in Section 3.14, several Frama-C plug-ins were developed to help determine the
progress of verification efforts. However, measuring such progress was not always producing the
desired results. Often, the progress appeared to remain constant even after several iterations of
the verification loop and after adding multiple invariants. This was in part due to that fact that
invariants provided by the game were limited to expressing invariants about numerical data types,
or because Weakest Precondition (WP) failed to prove the necessary invariants due to missing
environment assumptions that have to be provided by a human expert.

65
Approved for Public Release; Distribution Unlimited

For these cases, we still wanted to measure if the invariants generated by CHEKOFV are beneficial
to the value analysis by Frama-C. The metrics we chose is the cardinal of abstract states
computed by value analysis; the smaller the cardinal, the more precise is the abstract
interpretation. We illustrate this approach using the following program:

If we run Value on this procedure, it estimates that the procedure has approximately 111
reachable states and the intervals n ∈ {17} : i ∈ [17..127] for the local variables n and i. The
number 111 corresponds to the cardinal of the state space at the end of function main. Because
the analysis it non-relational, the concretization of this abstract value is:

{!n! = !17 ∧ i! = !17, n! = !17 ∧ i! = !18!,… !n! = !17 ∧ i! = !127!\}
That is, the concretization consists in the Cartesian product of all possible values for every
memory location.

Now, if we add an invariant to this program:

Value uses of the provided invariant to refine its results and estimates that there is now only 1
possible state at the end of this function (which is entirely deterministic) with the intervals n ∈
{17} : i ∈ {17}.

At the end of the increment statement i++, there are 17 possible values for i (between 1 and 18),
which is also the best possible abstraction for this example.
The size of this set can quickly become huge. For instance, in a trivial program that takes an
integer i as input and returns the same integer, we do not know the value of i, which can take
2^32 possible values (32 being the size of int). If there are m such unknown memory locations,
the cardinal is 2^(32)^m, which is huge for a program with as many global variables as BIND.
Using "big integers" to compute this cardinal exactly would have taken a prohibitive amount of
CPU time and memory.
For this reason, we decided to use a logarithmic scale to compute the size of the cardinal when it
can become big, i.e., when computing it for several memory locations. When there is a single

void main(void){
 int n, i;
 n = 17;
 for(i = 0; i < n; i++);
}

void main(void){
 int n, i;
 n = 17;
 /* loop invariant 0 <= i <= 17; */ :
 for(i = 0; i < n; i++);
 }

66
Approved for Public Release; Distribution Unlimited

memory location, 2^32 is a number with a reasonable size, and we used the normal scale, to
increase precision.

This "logarithmic cardinal" is stored in a floating point value for two reasons. The first is that the
result of the logarithm is generally not integral, and using floating point is thus appropriate. The
second is that we do want a precision loss that is proportional to the cardinal, which is exactly
what floating point provides.

In an exploratory case study, we ran the analysis on each function with loops in BIND and
computed the size of the state for each statement of the main function. We compared the results
with and without invariants. The results we have using the found invariants show that adding
invariants reduces the state space in 285 functions (1534 statements). The average state space
reduction is of 10^13,145 (to compare with the average state space of the program, in the range
of 10^218,916,217,7821,975).

While this metric is not part of the final CHEKOFV system, it provides valuable insights for
debugging the overall system, and spotting bugs during integration.

4.6 Xylem case study on SV-COMP Benchmarks
In a first feasibility study, we have generated puzzles for a set of programs from the sv-comp
loop benchmarks [28]. So far, players of Xylem have solved 9589 puzzles. Out of these solutions,
5395 were duplicated answers (either exact duplicates or logically equivalent). For 1488
solutions, Frama-C could verify that they are valid loop invariants, for 6590 Frama-C could
show that they are not invariants, and for 1511 invariants Frama-C failed to produce a result
because they contained non-linear expressions that could not be handled by the employed
theorem prover. This gives hope that even the relatively simple predicates that can be generated
by Xylem are suitable to assist formal verification.
We carried out several player interviews to assess the usability of the game. One of the main
complaints was that players wanted to be able to express transition predicates rather than
invariant properties. Players complained that they want to state properties such as “x always
increases by one”, or “y is equal to x from the previous state”. This may be a weakness of using
the concept of plant growth in our narrative and we are currently exploring ways to improve this.

Probably the biggest challenge that we are facing for our future work is the scoring system. For
reasonably large programs, it is not feasible to check player solutions on the server within a
reasonable time. However, because there are many formulas that hold for a bounded sequence of
states (including all tautologies), it is vital for the long-term motivation of the game to provide
immediate feedback about the quality of a solution to the player.
4.7 Democratizing Verification
As discussed in Section 3.X, Binary Fission uses a classification model that provides several
advantages in crowd-sourced verification. In particular, it provides a natural method of
aggregating results across the experience of the crowd. While there are millions of programs that
could benefit from formal verification, there are only a few thousand skilled logicians to
undertake that activity. However, classification eliminates all symbolic reasoning, and Binary
Fission only requires players to visually distinguish two classes of object patterns. Gamification
also expands the user base. The net result is that using classification democratizes the
verification task.

67
Approved for Public Release; Distribution Unlimited

Several features of Binary Fission that make the game easy to play also impact the quantity and
type of solutions found. First, the game suppresses the identity of program states and the
mathematical content of the predicates used as filters. While this design limits the intuition that
people can bring to bear on the verification task, it frees players to think less, and explore more
options while generating classification trees. In conjunction with the roll-over mechanic for
selecting and applying filters, Binary Fission encourages each player to work quite rapidly.

This approach has two, possibly hidden, benefits. Relative to the use of an automated
classification tool (that selects each filter based on some greedy metric), players are free to
explore locally non-optimal choices. By extension, the crowd as a whole will conduct a very
broad search over the space of possible classification trees. The net effect is that the crowd will
look under unexpected rocks, or if you prefer, for treasures in unanticipated locations. This is a
good use of the crowd for verification tasks.

Overall, it is unclear whether a game design that facilitates rapid, broad search is better than a
design that exposes details of the verification task and asks players to apply more problem-
specific intuitions. We developed the relatively abstract classification model in Binary Fission
because we saw that it would supply the kind of rapid feedback that would make the game
appeal to citizen scientists. However, a different design might supply the same benefits while
exposing more of the verification task’s structure. That would be a subject for a future CHEKOFV
game, after Xylem and Binary Fission.
4.8 Binary Fission Evaluation
Once players produce a classification tree, it is easy to read out logical expressions that
characterize good states and bad states, and those expressions constitute likely invariants. Binary
Fission classification trees are typically partial, such that leaf nodes can contain either good or
bad states, or a mixture of both. The conjunction of predicates that links the root to a pure good
node describes a set of states that satisfy program assertions, and expresses a likely invariant. As
shown in Figure 40, tracing from the root node to the two pure positive nodes produces P ^ Q
and P ^ R which form the candidate invariant (P ^ Q) (P ^R). A single player solution can
contain several such paths. By extension, the disjunction of paths to pure good nodes across all
player solutions forms the consensus, likely invariant. This results in an expression of the form:

PureGoodConjunct1 ... PureGoodConjunctn
Because these expressions are induced from data, they are only likely, or candidate invariants.
Determining whether an expression is an actual program invariant requires logical proof. In the
case of precondition finding tasks, and test the consensus likely invariants produced by Binary
Fission by passing them through the CBMC model checker; an automated tool that calculates the
logical effect of each program statement on the candidate invariant, and determines if the end
result implies the desired postconditions. In general, only a small number of the clauses in the
consensus likely invariant correspond to valid program preconditions. However, we have shown
that the crowd collectively succeeds at this task, and for non-trivial programs (See Appendix 5).

68
Approved for Public Release; Distribution Unlimited

Figure 40. Example of a decision tree produced by Binary Fission.

To give a sense of the scale, the Traffic Collision Avoidance System (TCAS) is a ~200-line
aircraft collision-avoidance program, and Binary Fission players found preconditions for 6 of its
7 functions (see Appendix 5). The likely invariants for those problems contained between 260
and 700 disjunctive clauses, and of those clauses, 6 to 103 of them proved to be program
preconditions. For several problems, the top three preconditions explained between ~25% and
~50% of the data. In other words, the crowd employed Binary Fission to find valid, and general
program preconditions. Said differently, the crowd (expectedly) finds quite a bit of junk, but
Binary Fission successfully coordinates a large number of people to uncover valuable
verification gems.

4.8.1 Agnosticism of the Classification Model. Our use of classification in Binary Fission has
an additional benefit for the game’s usefulness as a scientific tool; because the classification
model is agnostic as to the source of the data, and the source of the primitive predicates used to
separate that data, we can mate Binary Fission to a wide variety of automated tools. This is
important because it is generally difficult to produce predicates relevant to an invariant finding
problem, and to identify good, and especially bad program states. Automated tools for those
tasks typically involve restrictions on the underlying program. For example, Binary Fission
employed the Daikon system to suggest primitive predicates for use in precondition discovery,
but this restricted our domain of application to algebraic programs with no arrays and no pointer
variables. Given that the verification landscape is populated with many specialized tools that
generate predicates or data for particular classes of programs, the agnosticism of the
classification model opens the door to the maximum number of application paths.
We became aware of this benefit as the development of Binary Fission progressed. In the early
stages of the design, we knew that we wanted a sorting mechanic. However, we only realized
that agnosticism to data and predicate sources was an option when we began to connect the
nascent game to application programs. Our interest in crowd sourced science also helped to bring
this benefit into focus. Other classification oriented approaches exist for invariant discovery [14]
but their emphasis is typically on optimizing execution speed vs opening paths to application.

4.8.2 Game Features that Impact Solution Quality. Two features of Binary Fission acutely
affect the quality of the solutions that players find: the game limits the depth of the classification
tree, and it motivates players via a scoring function that shapes the classification tree.

69
Approved for Public Release; Distribution Unlimited

Binary Fission only allows trees of depth < = 5. We originally imposed this limit as a means of
managing screen real estate, as trees of larger depth contained too many nodes to display at once,
without reducing them to an impractically small size. (Building game mechanics to scan a larger
tree would needlessly complicate the player interface.) However, the depth bound also had an
unintended but fortuitous consequent for the verification task; it forced players to create small
trees that might partially segment the data, but that could only express logical functions of
limited complexity (one predicate per tree level). This complexity bound guards against
overfitting (the tendency to limit the generality of learned expressions by describing every
nuance in the data) which is a common failure mode of classification systems.
The scoring function for Binary Fission has a similar history. We introduced it as a somewhat
arbitrary metric to reward incremental achievements, based on the intuition that it was useful to
partially separate good states from bad, and especially useful to isolate pure nodes. We also
wanted to encode several degrees of achievement into the reward function, and these factors led
us to the following function:

Here, purity is the maximum over the percentage of good states and the percentage of bad states
in the node, and size is a count of the states in the node. A and B are arbitrary constants. N is a
constant that increases with the count of pure nodes, and decreases with maximum depth of the
classification tree. This scoring function assigns moderate rewards to partial success (creating
impure nodes), and significant reward to the creation of pure nodes. Moreover, it influences
players to produce as many pure nodes as possible, as early in the classification process as
possible.
This scoring function had its own unanticipated benefit for the verification task. By rewarding
the creation of many pure nodes at small depth that describe large amounts of data, it selects for
short logical expressions that have the potential to be useful, and general invariants. These are
exactly the type of statements that verification engineers seek when solving invariant discovery
tasks by hand.

4.8.3 Crowd-sourced Solution Progress. Figure 41 illustrates the crowd's progress towards
finding a consensus likely invariant in the TCAS problem set. It plots cumulative data explained
by the crowd-sourced solution, as accumulated in decreasing order of predicate quality (i.e., the
number of good program states recognized by the conjunctive predicate associated with each
Pure Good node). This figure supports several interesting observations. First, the top 20% of the
solutions explain 80% of the data, and this pattern repeats across all problems. This suggests a
statistical regularity in crowd performance, and an uneven distribution of expertise across players.
Second, the consensus solution is partial, meaning it fails to explain all the data even after
incorporating every player's contribution. This is an expected result, as Binary Fission limits the
depth of player classification trees -- some truths are simply hard to express in bounded space.
To investigate this point further, we employed a greedy search algorithm to construct a classifier
for the same problem, over the same primitive predicates. The method used average impurity for
scoring splits. When invoked with a depth limit of 5, the resulting partial classifier explained 21
good program states. This splitting metric clearly provided insufficient motivation to distinguish
Pure Good nodes early in the classification process that have utility for invariant generation. In

70
Approved for Public Release; Distribution Unlimited

contrast, the reward metric employed by Binary Fission clearly influenced players to isolate Pure
Good nodes at shallower depths, with the associated benefit for explaining good program states.
This pattern repeated across TCAS problems.
We also tested the expressive power of the primitive Binary Fission predicates by invoking the
greedy classification algorithm without a depth limit. The result here, and in all 7 TCAS
problems, was that the predicates had the power to correctly separate all good program and bad
program states. As a result, our statistics on Binary Fission solutions concern the performance of
the crowd, not the expressivity of the predicates at their disposal.

Figure 41. Progress of crowd towards consensus on invariant

4.8.4 Evaluation Summary. In this evaluation, we addressed the problem of crowd sourcing
program preconditions, under the model that crowd sourcing offers an alternate, and viable
method for addressing a difficult task. We have provided an existence proof in the form of the
Binary Fission game, and we have shown that crowd sourcing is effective by employing the
game to discover program preconditions for six particular problems. The preconditions are non-
trivial, reasonably general (as measured by data coverage on a test set), and human readable.
They are also novel, at least with respect to the output of DTInv, which finds likely invariants
that do not qualify as program preconditions.

4.9 Recent Binary Fission Productivity
Figure 42 illustrates recent player participation in Binary Fission. Spikes may be observed at
several points as a result of upturns in interest in the project. We believe that the large spike in
August 2015 is associated with the publicity surrounding the 2015 Usenix Security Symposium,
where various elements of our work were presented, as well as additional media outreach during
that period.

71
Approved for Public Release; Distribution Unlimited

Figure 42. Player participation in Binary Fission – mid-May to mid-October 2015
The number of solutions submitted also tends to spike when new players are recruited. However,
as demonstrated in Figure 43, we also see upticks in solution submissions that result from
mailshots to current players, such as the one towards the end of September 2015.

Figure 43. Binary Fission solutions submitted – mid-May to mid-October 2015

72
Approved for Public Release; Distribution Unlimited

5. CONCLUSIONS

5.1 Whole-program analysis in context
As discussed in Section 3, our extended exploration of BIND indicated that whole-program
analysis, like Value, works poorly with such a large code base. Unfortunately, modular analysis
also works badly because of the heavy use of function pointers in this system. As an example,
Calcagno, Distefano, O'Hearn and Yang [29] used a modular analysis on big C programs and
reports the results shown in Table 8.

Table 8. Results of modular analysis on large C programs [29]
Program% Version% KLOC% Number%of%

procs%
Proven%Procs% Proven% Time%

Linux%kernel% 2.6.30! 3032! 143768! 86268! 60! 9617.44!
Gimp% 2.4.6! 705! 16087! 8624! 53.6! 8422.03!
Gtk% 2.18.9! 511! 18084! 9657! 53.4! 5242.23!

Emacs% 23.2! 252! 3800! 1630! 42.9! 1802.24!
Glib% 2.24.0! 236! 6293! 3020! 48! 3240.81!

Cyrus%imapd% 2.3.13! 225! 1654! 1150! 68.2! 1131.72!
OpenSSL% 0.9.8g! 224! 4982! 3353! 67.3! 1449.61!
Bind% 9.5.0! 167! 4384! 1740! 39.7! 1196.47!

Sendmail% 8.14.3! 108! 820! 430! 52.4! 405.39!
Apache% 2.2.8! 102! 2032! 1066! 52.5! 557.48!
Mailutils% 1.2! 94! 2273! 1533! 67.4! 753.91!
OpenSSH% 5! 73! 1329! 594! 44.7! 217.81!
Squid% 3.1.4! 26! 419! 281! 67.1! 107.85!

As can be seen, despite the fact that programs known to be difficult were present (such as Linux),
BIND was the one with the worse results.

As noted in Section 6 – Recommendations, the CHEKOFV analysis of BIND drove a series of
insights for enhancing our verification tool set.

5.2 Scoring scheme in Xylem
Because a valid Xylem solution with certain numbers of variables or bonus tiles might not even
be possible in a given problem, we couldn’t simply provide scores based on the number of
variables or bonus tiles used. Instead we used a model inspired by the science-based game
SpaceChem (www.zachtronics.com/spacechem/). At the completion of a level, SpaceChem
shows the player a visualization of how they have performed compared to other players of the
same level. We adapted this to Xylem by plotting out on a chart the number of variables and
bonus tiles used by a player as compared to other players of the same puzzle. As discussed
earlier, if a player used the same or greater number of variables (and, separately, bonus tiles)
than the highest number used so far by any player, then they receive a star. In the same way,
players were scored for bonus tiles, and producing an equality in a solution gave the player

73
Approved for Public Release; Distribution Unlimited

another star. In this way, a player could receive a score of up to three stars per puzzle.
Additionally, a special stamp is granted to the player if they have created a “novel solution”.
That is, a solution that hasn’t yet been recorded for this particular puzzle.
This scoring system was included in the first release of the game. Unfortunately it had some
notable problems, not the least of which was that it was very easy to “game” the system, by
taking advantage of the design in order to always get a high score. This frustrated those players
who did not want to cheat, but at the same time were faced with an obvious way to collect three
stars every single time without putting much effort in. It also made players’ contributions feel
somewhat meaningless, knowing that other players could achieve three stars without carefully
considering the puzzles. Furthermore, because it was so easy to “game” the system, the process
risked transitioning from “not overly contributing" to Xylem’s science goals to being pretty much
useless for this endeavor. The original design was intended to encourage the contribution of
useful invariants, reward players for their efforts while playing the game, and encourage them to
continue playing. However, it did none of these things, and so revisions to the scoring system
became the main impetus for releasing a major Xylem update post-launch.
Another Xylem scoring idea considered, but subsequently not implemented, was to build a
restricted-inference capability into the game client that could check the relative strength of a
player-submitted invariant against invariants established by the backend. This would provide
immediate feedback of two types: that the player’s solution is subsumed by known invariants, or
potentially unique (pending evaluation by the backend). Unique candidates would receive a high
score. Defining and using such a structure is an example of a problem at the boundary between
game development and verification research, which we hope to explore further in future projects.

5.3 Peer review in Xylem
In the process of upgrading Xylem during Phase One of the project, we introduced a peer review
scheme, where players had the opportunity to rate the solutions previously provided by others.
Figure 44 shows a sample screen from this part of the game. This technique provided us with a
mechanism to crowd-source the relative quality of candidate invariants, as well as offer
additional opportunities for players to earn more rewards.

5.4 Insights on Binary Fission evaluation
Earlier in this report, we addressed the problem of crowd-sourcing program preconditions, under
the model that crowd sourcing offers an alternate, and viable method for addressing a difficult
task. An existence proof in the form of the Binary Fission game has been provided, and we
showed that crowd sourcing is effective by employing the game to discover program
preconditions for 6 TCAS problems. The preconditions are non-trivial, reasonably general (as
measured by data coverage on a test set), and human readable. They are also novel, at least with
respect to the output of DTInv, which finds likely invariants that do not qualify as program
preconditions.

74
Approved for Public Release; Distribution Unlimited

Figure 44. Peer review screen from Xylem

There are three sources of power behind Binary Fission: it employs an expressive representation,
it relies on the crowd to conduct a thorough search, and the game imposes restrictions on that
search that select for general solutions. In more detail, the representational power comes from
Daikon, as Binary Fission inputs the highly structured predicates it produces. The game exploits
crowd search by collecting and testing the large number of piecewise solutions that players
contribute. The game influences the shape of the solution by limiting classifier depth, and by
rewarding discovery of partial classifiers that isolate positive data, which has special utility for
invariant construction.
While Binary Fission employs a classification model, improving classification technology is not
our goal. Our main point is to introduce crowd sourcing as a promising approach to invariant
discovery. From this perspective, the key conjecture behind crowd sourcing is that many non-
expert individuals have the desire and ability to provide insight into highly technical problems
when they are presented in a suitable form. This conjecture holds for Binary Fission. If it
generalizes, related games will provide leverage on additional verification tasks, and crowd
sourcing will offer an avenue for expanding the reach of verification technology.

At this stage, we can only report the first results from a crowd-sourced approach to precondition
discovery. As mentioned above, the key points are that crowd sourcing is feasible, effective, and
promising as a practical avenue for expanding the reach of verification methods. That said, there

75
Approved for Public Release; Distribution Unlimited

are several threats to the validity of these claims, as well as our more detailed results.
First, while crowd sourcing finds preconditions on TCAS, the approach may not generalize to
more complex programs. In particular, TCAS is a short, straight line, arithmetic program that
lacks pointers, loops, complex data structures, and a range of other language features that
complicate the verification task. The counterpoint is that Binary Fission is agnostic to the
structure of the underlying program, because it formulates precondition discovery as
classification. The limits on its use come from the need for inputs common to classifiers; a base
of relevant primitive predicates, and labeled data distinguishing bad program states from good. It
is true that these inputs are hard to provide for more complex programs (especially the predicate
base and assertion violating program states) as they are the product of deep analyses of program
structure. However, Binary Fission is also agnostic as to the source of these data, which greatly
increases its avenues for application.
Second, our results on the novelty of the Binary Fission solution could be the product of our
choice of DTInv as the comparator. This is quite plausible; the likely invariants produced by
other machine learning methods might qualify as preconditions. However, our experience with
Binary Fission has illuminated constraints that should be applied to the use of classifiers for this
task; they should penalize solution size (which is common wisdom), employ a powerful
predicate base to support human legibility of the end result, and reward identification of pure
good nodes rather than focus on an entropic measure as the splitting criterion.
A third, and broader concern, is that classification is viable but our use of crowd sourcing is
superfluous, meaning that Binary Fission can be replaced by a suitable automated method. This
argument is relevant at this stage in the development of Binary Fission, but it devolves to the
underlying question, “What does the crowd bring to classification that is difficult to automate?”.
In the case of FoldIt, players brought spatial intuition to the task of folding complex proteins,
and obtained results never achieved through search over molecular conformations in
combination with energy minimization methods.
Classification tasks also have a natural framing as search, and by analogy, the crowd may intuit
which predicates to employ en route to a more general solution. Binary Fission currently hides a
bit too much information to support this type of intuition (in service of broadening the game's
appeal), but advanced versions will provide more context about the underlying task. We
currently rely on the crowd to explore unexpected places relative to the greedy search conducted
by automated methods, and this approach has successfully produced program preconditions.
Another consideration is that Binary Fission may be addressing a less salient crowd-sourcing
problem. Rather than ask the crowd to combine primitive predicates, perhaps their skills would
be better employed on the task of inventing the predicates themselves. As was discussed earlier,
this was the intent of Xylem and the other Phase One CSFV games [30]. Predicate invention
(including predicate abstraction from data) is a critical, but elusive, process currently performed
by people, as is the process of finding the ideal crowd-sourcing techniques themselves.
In summary, Binary Fission was employed to analyze the implementation of an on-board aircraft
collision detection and avoidance system. We found that the crowd can employ Binary Fission to
prove program properties. They found function preconditions (statements about program
variables associated with function inputs) that guarantee important safety properties hold on
program exit, where those properties are encoded as postconditions. Binary Fission players also
discovered concise, general, and human readable preconditions, which are also novel relative to

76
Approved for Public Release; Distribution Unlimited

the complicated logical expressions often produced by other classifications systems. The players
have no special expertise in formal methods or programming, and are not specifically aware they
are solving verification tasks.
Binary Fission demonstrates the feasibility of crowd-sourced invariant discover, and it illustrates
the promise of crowd sourcing for other verification tasks. This suggests a pathway for
expanding the reach and practical application of verification technology.

5.5 Game Features for Science Tasks
Binary Fission is both a game and a mechanism for program verification. As a result, the design
has two roles that are sometimes in conflict. In particular, the game must be enjoyable to have an
audience at all, which exerts a force towards simplifying or abstracting the science task in service
of playability. However, as a verification technique, Binary Fission must also maintain fidelity to
the science task to be useful at a practical level. This tension implies a small sweet spot in the
game design.
Previously, we have discussed the development of Binary Fission as a playable game. We now
examine the evolution of features that impact its usability for crowd-sourced verification, and
that shape the quality of the solutions they find as perceived by verification engineers. Usability
features include the use of classification trees for crowd sourcing, and Binary Fission’s agnostic
stance towards the source of predicates and good/bad program states. The key solution-shaping
features are the reward function, and depth limit on the size of the solution tree.
The classification model employed by Binary Fission provides several advantages for facilitating
crowd-sourced verification; it captures several types of verification problems, it expands the set
of people who can perform the task, and it provides a natural method of aggregating results
across the experience of the crowd.
In more detail, several forms of the invariant discovery problem easily map onto the task of
distinguishing good states from bad. As mentioned earlier, if the target is loop invariants, any
state produced by the loop at a given iteration is good, and any state that could never be
produced by the loop at that iteration is bad. If the task is finding program preconditions, good
states are program inputs that satisfy postconditions on execution, while bad states violate those
postconditions. In both cases, the logical function expressed by the classification tree provides
encoded candidate invariants.

Once players produce a classification tree, it is easy to read out logical expressions that
characterize good states and bad states, and those expressions constitute likely invariants. In
Binary Fission, the classification trees are typically partial; some leaf nodes only contain good
states, some only contain bad states, while others contain a mixture. The conjunction of
predicates that links the root to a pure good node describes a set of states that satisfy program
assertions, and expresses a likely invariant. A single player solution can contain several such
paths.
It is worth noting that we only understood how to form a consensus invariant after Binary
Fission had been developed and deployed. Our original thought was that we could use the pure
bad nodes and the impure nodes in the classification tree. It turns out that the impure nodes are of
no value for finding program invariants except as input to further search/classification. However,
the pure bad nodes can offer value; the negation of a path to any pure bad node can be AND-ed
into the description of any pure good node, and the result tested via the model checker. The

77
Approved for Public Release; Distribution Unlimited

additional restriction may turn a failed candidate into a valid precondition (or make a successful
candidate less general).

Finally, as noted earlier, the classification model in Binary Fission is agnostic as to the source of
the data, as well as the source of the primitive predicates used to separate that data. This
introduces a broader benefit for the game’s usefulness as a scientific tool, because Binary Fission
can be deployed as a human-driven aggregator to a wide variety of automated tools.

5.6 Challenges Involving Research Ethics Oversight
The fundamental public relations and marketing strategy for the overall CSFV program was to
unify multiple verification games into a single Verigames identity. This provided valuable
promotional leverage for all the game-development teams, and it centralized the player
recruitment and signup process. The core Verigames coordination was handled by a separately-
contracted team led by TopCoder (now part of Aperio Inc). This simplified things from an
individual player's point of view, because they only needed to enroll once to participate in the
complete program. However, a key impact of this approach was that the process for obtaining
and maintaining Institutional Review Board (IRB) approvals differed substantially from the
typical standard procedures used for many other behavioral programs involving human
participants.
The top level IRB application strategy for CSFV was to assemble a single package covering all
teams and institutions, and obtain central approval for the overall program. However, this
resulted in the need for specific local IRB approvals at any institution that was involved with
collecting and analyzing software verification data. For CHEKOFV, this strategy posed problems
at both SRI and UCSC, because our team members were not involved with player recruitment
and were not collecting or accessing any personally-identifiable information (PII). Thus,
representatives of both the local IRBs considered the project to be exempt from their purview.
However, these initial decisions were not considered as providing sufficient ethical oversight to
justify obtaining central approval for the overall CSFV program.

In the course of managing this approval process, it was noted that players under 18 years old
might be recruited as participants. The result was that additional consent forms and other
document revisions, including a specific Benefits to Minors statement (see Figure 45), were
needed for inclusion in an updated central application package. Because there was now a
possibility that minor participants might be involved in our work, the local IRBs at both of our
institutions we able to confirm that the research project no longer qualified as exempt from their
oversight, and they each generated an expedited approval for CHEKOFV instead. These decisions
in turn provided adequate justification for central approval for the overall program.

As it subsequently transpired, there were other administrative and logistical challenges involved
with recruiting minors as players, so that part of the general CSFV program activity was later
dropped in any case. Further information on undertaking online-centric behavioral research in
the future may be found in Section 6: Recommendations of this report.

78
Approved for Public Release; Distribution Unlimited

Figure 45. Xylem statement on Benefits to Minors

79
Approved for Public Release; Distribution Unlimited

6. RECOMMENDATIONS
6.1 Citizen Science and Binary Fission
The main goal of our citizen science work has been to introduce crowd sourcing as a promising
approach to invariant discovery. From this perspective, the entire CHEKOFV game infrastructure,
in particular the underpinnings of Binary Fission, is an exploration of a simple conjecture, i.e.,
that many non-expert individuals have the desire and ability to provide insight into verification
tasks when they are presented in a suitable form. From our initial experience, this conjecture
appears to hold, especially because Binary Fission was designed as an aggregator/consolidator
for candidate invariants for other games, robot solvers, or automated verification tools. If it
generalizes, the related games will provide leverage on additional verification tasks, and crowd
sourcing will offer an avenue for expanding the reach of verification technology.
As a result, the work of CHEKOFV can be expanded in multiple directions. One obvious direction
is to extend Binary Fission by addressing known flaws in existing source code. For example, we
could make use of the pure bad nodes in the classification tree to improve the formal invariant
test. We could introduce additional social collaboration features. More broadly, we could address
the criticism that BF does not engage the crowd’s intuitions about classification tasks by
exposing more insights on the program state, and by developing game mechanics for visualizing
and parameterizing the application of predicates to the data space. The goal here would be to let
players more usefully employ human spatial intuition.
A second path forward would be to build (literally) an industrial strength version of Binary
Fission. This successor game would input client code, and interface with a variety of automated
techniques that provide predicates, supply good and bad program states, and test crowd sourced
candidate invariants for their status as actual invariants against the client’s program. This game
would require surmounting or finessing significant technical challenges, as the current generation
of automated techniques carry idiosyncratic restrictions on the size and content of the program
under analysis, on the types of conclusions they can draw, and on the computational efficiency of
deriving those results. As a consequence, Binary Fission II would probably accept a class of
programs far larger than the algebraic functions analyzed by the current game, but far less
general than the arbitrary programs that industrial clients might hope to analyze.
A third avenue to explore would be to produce a suite of games that collectively span a
verification task. For example, we could let players define primitive predicates in a Xylem-like
environment, and then compose them via Binary Fission to form more complex invariants.

A logical extension of this idea is to build a suite of crowd-sourced games that address each hard
part of data driven invariant discovery; predicate generation (a la Xylem), the creation of good
and (especially) bad program states, composition of likely invariants (as in Binary Fission),
evaluating the strength of likely invariants (with feedback into the games for predicate
generation), and testing likely invariants as program invariants, to name a few. Our intuition on
this last task is that data driven predicate generation games could be employed to augment an
automated model checker by proposing predicates that facilitate its derivation when it encounters
difficulties.

As a whole, a robust development of crowd sourced verification games has the potential to
greatly expand the application and utility of verification technology.

80
Approved for Public Release; Distribution Unlimited

6.2 Future Directions for Verification using Value Analysis
The comprehensive investigation of value analysis within the CHEKOFV project, particularly in
the context of Frama-C, resulted in the development of several new software tools that helped to
address several of the shortcomings described previously in Section 4.3. We believe that the
related lessons learned offer a number of valuable directional pointers for future research in the
formal verification field.

6.2.1 Non-termination analysis. To better understand the situation where value analysis could
not terminate, we developed several new tools during the course of the project.
Recursive component analysis
The first tool to be developed was used to finds the recursive functions in a program by
analyzing the strongly connected components in the syntactic call graph, together with the entry
points of this connected component. This tool cannot prove the absence of recursion in a
program, due to function pointers (as happens in BIND); however it finds all the syntactically
recursive calls (that do not go through function pointers), which is the most common case.
Moreover, as it gives the entry point to these recursive components, it tells which function to
stub to replace the set of function.

The development of this tool raised the more general question of how to partition large code
bases automatically to make them amenable for automatic analysis. Finding suitable a
partitioning of BIND for the analysis with Frama-C turned out to be a labor-intensive step
because the verification engineer had to develop an in-depth understanding of the application
logic and data structures used in BIND . E.g., BIND reads configuration data from a file into a
red-black tree which needs to be stubbed manually because neither configuration data nor the
data structure can be handled efficiently by Frama-C.
Extending the recursive component analysis to identify and stub more parts of the input program
that are known to cause problems with Frama-C would significantly reduce the manual effort
required during the verification.

Profiling
We have also instrumented the analyzer so that it reports where it spends time analyzing C
functions. For every function, it reports the number of times that it was called, and the total time
analyzing the code of that function. It also reports the time spent for each function in each level
in each call stack, as well as the current call stack.
Using this report, one can replace the functions that takes too long to be analyzed, and are called
too often, by stubs that takes a shorter time to analyze. This tool is now integrated in Frama-C,
and has proven invaluable in many situations to improve the analysis time. We believe that other
analysis tools could also benefit from this form of internal performance monitoring.
De-recursifier

We have developed a new way to handle recursive calls in Value, that requires no change to the
memory model. The idea is that when a function is called, which was already in the call stack,
the code of the function is dynamically duplicated. This handles the fact that local variables are
considered as if they were global by value; by the code duplication, we have two instance of the
variable. Of course this technique only works in the case where the recursion is of finite height,

81
Approved for Public Release; Distribution Unlimited

and Value is precise enough to find out that this is the case; but in some cases this spares the
need to stub a recursive function.

Program transformations such as this increase the degree of automation, however, they alter the
structure of the program and thus make it harder to track findings back to the original program.
In the future, we plan to implement this step and similar steps as refactoring to improve
traceability. This is an interesting direction because, unlike normal refactoring, the refactoring in
the context of verification does not necessarily have to preserve the semantics of the original
program (e.g., it might over-approximate).

Memexec cache
Because Value analyzes function calls by (semantically) in-lining them, analyzing a function call
can take a lot of time. But many times, different function calls take the same arguments in
memory; for instance function calls in a loop vary only slightly in their execution, and they may
call sub-functions with the exact same arguments.
For this reason, Value has a "cache" which associates to each function, to each set of values of
the part of memory read by the function, the part of memory that is assigned by the function.
When the function is called in the same conditions, the output can be reused. This cache is
crucial for execution time: for instance, its use in Paparazzi allowed some analyses to be
executed for several seconds, instead of several minutes.

However, this cache was incompatible with the use of dynamic allocation: when the cache was
hit, it behaved as if the memory allocations returned were re-using an old memory region,
instead of a fresh one. During the course of the project, this memexec cache was enhanced to
properly (soundly) handle dynamic allocations.

In the future, we plan to combine value analysis with shape analysis summaries like the ones
computed by Facebook’s Infer tool to improve the effectiveness of memexec cache.

6.2.2 Other enhancements. We developed modifications to our custom build tool that
dynamically record the set of arguments used when compiling BIND, and enable it to be used by
the preprocessing and parsing phase of Frama-C. We also implemented a preprocessing plugin
that manages calls to variadic functions (i.e. those which accept a variable number of arguments)
by simplify them into regular function calls, and generates ACSL contracts along the way.
Others miscellaneous verification features developed for the project included the introduction of
additional warnings that allows to better track when loss of precision occurs, as well as many
extensions to our stub of the GNU C library.

6.2.3 New analyzer. The above extensions allows better understanding of what does not work,
and provide workarounds in some cases, but the main causes we have identified (finite memory
model, absence of relation and intra-procedural trace partitioning) remain. Using our experience
with Value and the lessons learned from analysis of BIND, we have begun developing an
analysis framework that could handle these issues. In particular, the memory model is parametric,
so that it can be changed to handle infinite memory, or to do a pessimistic modular intra-
procedural analysis (which allows analyzing recursive calls).
6.3 New Framework for Research Ethics
As noted in Section 5, the process for obtaining and maintaining Institutional Review Board
(IRB) approvals for the overall CSFV program differed substantially from the typical procedures

82
Approved for Public Release; Distribution Unlimited

used in many other behavioral programs involving human participants. In particular, the IRB
application strategy for CSFV was to assemble a single package covering all teams and
institutions, and obtain central approval for the overall program.
Under the procedures that were prevailing at the time, this necessitated first obtaining local
approvals at each participating institution, which can rapidly become a coordination headache.
IRB guidelines and regulations are primarily designed for classical human research laboratory
work in fields like medicine and psychology; however, they have limited practical relevance to
modern human behavior studies, such as CSFV, that involve highly-networked information and
communications technology systems.
Nowadays, numerous distributed research consortiums are working in these contexts, not just
with crowd-sourcing activities, social networks and popular gaming worlds, but also with online
educational environments, cybersecurity applications, and surveillance systems. The current
impracticalities with research ethics oversight are exacerbated by the pervasive need to undertake
comprehensive, transnational experimental projects, where much of the human data collection
and analysis is undertaken remotely across varied, and often incompatible, legal regimes and
social norms. In such conditions, it is inevitable that individual local IRBs will maintain differing
opinions about their purview for these forms of, typically low-risk, studies.
Newly proposed regulatory changes may assist with addressing some of these practicality
concerns. Revised policies and regulations have been put forward for comment with the
publication of a Notice of Proposed Rulemaking (NPRM) in the U.S. Federal Register [31].

Although these updates may contribute somewhat to improving the situation, further
coordinating guidelines and support is required for overseeing human participant research using
online systems and other cyber-environments across multiple jurisdictions. In essence, an
international ethics observance organization is needed for this purpose. This could for example
be a consortium of non-profit organizations operating in several domains, which would ensure
smooth transnational processing of approvals. It seems appropriate that such a consortium would
need to have the backing of a recognized international entity such as UNESCO.
6.4 Educational Games: Project Fibonacci
6.4.1 Background. Project Fibonacci is a proposed initiative for adapting Xylem: The Code of
Plants to a game for math anxiety reduction and algebra learning among middle school students.
Math anxiety has been the subject of considerable scholarship for several decades [32][33]. For
many reasons, middle school becomes a critical moment for a student’s relationship with math:
because there is a jump in math skills required from elementary to middle school, because math
in middle school becomes very abstract, or because some middle schoolers are not
developmentally ready for the abstraction.
Students at this juncture who disconnect from math and decide that they are just not good at it,
that its not for them, can develop life-long math anxiety which not only affects their future
schooling but can cause them problems during their adult years as well. It can have profound
effects on their self-esteem and self-image and cause them to avoid activities that they may be
otherwise interested in (running their own business, programming, and science). Even paying a
check at a restaurant or looking over bills can cause embarrassment and anxiety symptoms.

83
Approved for Public Release; Distribution Unlimited

6.4.2 Approach. Project Fibonacci aims to create an intervention in the mathematical lives of
middle school students, shoring up their skill and confidence in math so that they have an
opportunity to avoid the pain of math anxiety and build a positive relationship with it. This
intervention takes the form of a game that teaches and supports math skills while being
intrinsically motivating.
Fibonacci can be adapted from the existing math-puzzle game Xylem: The Code of Plants, if
several changes are used to create an age-appropriate game that meets the science objectives:

• Replace procedurally generated puzzles with hand-crafted puzzles, with attention given
to creating an appropriate difficulty curve.

• Use a reward structure to reinforce players’ successes on a personal one-on-one level.
• Add new theme and narrative framing that will appeal to the target audience, while

making the math more concrete by tying it to real-world phenomena.

At the same time, using the Xylem engine gives us several advantages over creating a game from
scratch: Xylem includes a sophisticated equation builder, which allows players build equations
from component parts.
The core gameplay of Xylem involves inductive reasoning, and is one of very few games to do
so. This encourages players to look at mathematics from a different angle than they are
accustomed to. The core gameplay of Xylem involves cognitive reasoning, pattern recognition
and mathematical thinking. It is not simply math drills but rather puzzles to figure out, thereby
supporting the philosophy of the new Common Core Standards in mathematics.

Because we are no longer tasked with deriving puzzles from actual code in a piece of existing
software, we can hand-craft the puzzles presented to players and in so doing handcraft the
difficulty curve of the game. We are able to teach concepts in a logical order and to allow players
to gradually expand their skill set at a comfortable pace. The game will be designed such that
players are building on their own improving skills and experiences as they progress.
6.4.3 Related Work. While the space of math games is well populated, most attention to
gameplay and aesthetics of the game experience is spent on games for elementary school
students. Games exist for middle school to adult populations, but these games are often little
more than math drills. Arguably the best math game for any age group, DragonBox teaches
algebra skills. While Project Fibonacci will teach math skills to middle-school aged students, its
central objective is to foster greater comfort in working with numbers and the ability to think
mathematically. We also wish to help students make a smoother transition from concrete to
symbolic thinking in mathematics.
Wigfield and Meece [32] identified affective components in math anxiety among 6th to 12th-
graders, such as nervousness, fear and discomfort, as well as cognitive components expressed
primarily as worry about performance. They recommend that both components should be
addressed by efforts to reduce math anxiety: the cognitive through confidence-building and the
affective through “training to reduce fear and dread” of mathematics. The design of Project
Fibonacci addresses both concerns by using inductive reasoning, a carefully controlled difficulty
curve, hand-crafted puzzles, and the ability for players to work together on puzzles. By
representing core math concepts as puzzles, the game offers youngsters a different way of
looking at math.

84
Approved for Public Release; Distribution Unlimited

7. REFERENCES
[1] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski, “Frama-C: A

Software Analysis Perspective,” Form. Asp. Comput., pp. 1–37, Jan. 2015.
[2] P. Cousot, P. Ganty, and J.-F. Raskin, “Fixpoint-Guided Abstraction Refinements,” in SAS,

2007.
[3] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice Model for Static

Analysis of Programs by Construction or Approximation of Fixpoints,” in POPL, 1977.
[4] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival, “The

ASTRÉE analyzer,” in PLS, 2005.
[5] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and C.

Xiao, “The Daikon System for Dynamic Detection of Likely Invariants,” Sci Comput
Program.

[6] P. Garg, C. Löding, P. Madhusudan, and D. Neider, “Ice: A robust framework for learning
invariants,” in CAV, 2014.

[7] R. Sharma and A. Aiken, “From Invariant Checking to Invariant Inference Using
Randomized Search,” in CAV, 2014.

[8] R. Sharma, S. Gupta, B. Hariharan, A. Aiken, and A. V. Nori, “Verification as learning
geometric concepts,” in SAS, 2013.

[9] R. Sharma, A. V. Nori, and A. Aiken, “Interpolants as classifiers,” in CAV, 2012.
[10] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided Abstraction

Refinement for Symbolic Model Checking,” J ACM, vol. 50, no. 5, Sep. 2003.
[11] K. L. McMillan, “Lazy Abstraction with Interpolants,” in CAV, 2006.
[12] I. Dillig, T. Dillig, B. Li, and K. McMillan, “Inductive Invariant Generation via Abductive

Inference,” in OOPSLA, 2013.
[13] L. Zhang, G. Yang, N. Rungta, S. Person, and S. Khurshid, “Feedback-driven Dynamic

Invariant Discovery,” in ISSTA, 2014.
[14] S. Krishna, C. Puhrsch, and T. Wies, “Learning Invariants using Decision Trees,” CoRR,

2015.
[15] S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,” in CAV, 1997.
[16] C. Flanagan and S. Qadeer, “Predicate Abstraction for Software Verification,” in POPL,

2002.
[17] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata, “Extended

Static Checking for Java,” in PLDI, 2002.
[18] B. S. Gulavani, S. Chakraborty, A. V. Nori, and S. K. Rajamani, in TACAS, 2008.
[19] W. Dietl, S. Dietzel, M. D. Ernst, N. Mote, B. Walker, S. Cooper, T. Pavlik, and Z. Popović,

“Verification games: Making verification fun,” in Proceedings of the 14th Workshop on
Formal Techniques for Java-like Programs, 2012, pp. 42–49.

[20] P. C. Wason, “On the failure to eliminate hypotheses in a conceptual task,” Q. J. Exp.
Psychol., vol. 12, no. 3, pp. 129–140, Jul. 1960.

[21] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,” J. ACM, vol. 46, no.
5, pp. 604–632, Sep. 1999.

[22] A. Cooper, The Inmates are Running the Asylum. Indianapolis, IN, USA: Macmillan
Publishing Co., Inc, 1999.

85
Approved for Public Release; Distribution Unlimited

[23] S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay, D. Baker,
Z. Popović, and F. players, “Predicting protein structures with a multiplayer online game,”
Nature, vol. 466, no. 7307, pp. 756–760, Aug. 2010.

[24] A. Kawrykow, G. Roumanis, A. Kam, D. Kwak, C. Leung, C. Wu, E. Zarour, Phylo players,
L. Sarmenta, M. Blanchette, and J. Waldispühl, “Phylo: A Citizen Science Approach for
Improving Multiple Sequence Alignment,” PLoS ONE, vol. 7, no. 3, p. e31362, Mar. 2012.

[25] K. Tuite, N. Snavely, D. Hsiao, N. Tabing, and Z. Popovic, “PhotoCity: training experts at
large-scale image acquisition through a competitive game,” 2011, p. 1383.

[26] C. Pacheco and M. D. Ernst, “Randoop: feedback-directed random testing for Java,” in
OOPSLA Companion, 2007, pp. 815–816.

[27] A. Biere and R. Bloem, Eds., Computer Aided Verification, vol. 8559. Cham: Springer
International Publishing, 2014.

[28] D. Beyer, “Status Report on Software Verification - (Competition Summary SV-COMP
2014),” in TACAS, 2014, pp. 373–388.

[29] C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang, “Compositional shape analysis by
means of bi-abduction,” 2008, p. 289.

[30] H. Logas, J. Whitehead, M. Mateas, R. Vallejos, L. Scott, D. Shapiro, J. Murray, K.
Compton, J. Osborn, O. Salvatore, and others, “Software Verification Games: Designing
Xylem, The Code of Plants,” FDG, 2014.

[31] U. S. F. Register, “Protection of Human Subjects,” Not. Propos. Rulemaking NPRM, vol.
www.federalregister.gov/articles/2015/09/08/2015–21756/federal-policy-for-the-protection-
of-human-subjects, 2015.

[32] A. Wigfield and J. L. Meece, “Math anxiety in elementary and secondary school students.,”
J. Educ. Psychol., vol. 80, no. 2, pp. 210–216, 1988.

[33] F. Pajares and L. Graham, “Self-Efficacy, Motivation Constructs, and Mathematics
Performance of Entering Middle School Students,” Contemp. Educ. Psychol., vol. 24, no. 2,
pp. 124–139, Apr. 1999.

86
Approved for Public Release; Distribution Unlimited

8. APPENDICES
Appendix 1: Jason Rohrer: Code Breaker Design Concept.

Appendix 2: Huascar Sanchez: Loop Analysis in BIND/lib.

Appendix 3: Maria Daltayanni: CHEKOFV Ranking System (CRS).

Appendix 4: Lauren Scott: CyphrSeedr Tutorial Design Document.

Appendix 5: Fava et al: Crowdsourcing Program Preconditions via a Classification Game

87
Approved for Public Release; Distribution Unlimited

CHEKOFV Final Report

Appendix 1

Code Breaker Design Concept

Jason Rohrer

88
Approved for Public Release; Distribution Unlimited

Design Concept: Code Breaker

Jason Rohrer

January 16, 2012

1 Introduction
We’ve already narrowed our focus down to crowd-sourced discovery of loop invariants. Even
within this relatively limited realm, it seems that reasoning about pointers and arbitrary data struc-
tures, without representing those structures explicitly, is beyond the reach of a casual-friendly,
sufficiently-abstract game design. During our meeting, I watched marble-and-pipe machines sprout
dizzying complexity as they tried to capture the behavior of even a simple linked list.

In a last-ditch effort to produce a design that doesn’t explicitly represent program structure, I’m
further narrowing the focus: loops for which the full, relevant state space—for a given execution
instance of the loop—can be represented by a finite set of numerical values.

2 Thematic Overview
A newly constructed radio telescope has been receiving perplexing data sequences from various
points in deep space. At first, these sequences were dismissed as the output of quasars, but over
time, that explanation has become less and less satisfying. First of all, the locations of these sources
do not match the positions of any previously known quasars—not surprising in and of itself, given
that this scope is more sensitive than previous devices. More shocking is the data itself: when
interpreted numerically, it seems that clear, logical patterns emerge. We are hesitant to use the
“I” word here, but we almost cannot help seeing some kind of intelligence in these patterns. Not
language, as we normally think of it, but perhaps a language of numerical relationships? We don’t
know for sure, and that’s why we need your help.

We’ve got thousands of sources to analyze. Furthermore, from each source, we have a virtually
unlimited supply of sample messages of varying length. Each message is an example of the pattern
being output by a given source. Your job is to detect and describe a pattern in each source’s
messages. If your pattern misses something, our database will automatically provide you with
messages that break your proposed pattern—more information with which you can revise your
pattern.

But just because you devise a pattern that covers all messages from a given source doesn’t
mean that you’ve nailed it. Maybe your proposed pattern isn’t as specific as it could be. You’ll

1

89
Approved for Public Release; Distribution Unlimited

be collaborating with others from around the world who are working on the same task. Together,
you’ll hone the pattern for each source down into its tightest, most well-tuned form.

3 Design Description

3.1 Related Design
The enormously popular casual puzzle game Square Logic gives players a grid of logical and
mathematical constraints (for example, “these cells must all be odd,” “these cells must sum to 6,”
or “the product of these cells must be 8”) and then asks the player to fill the grid with numbers,
Sudoku-style, so that no number occurs more than once in each row or column:

http://www.squarelogicgame.com/

Code Breaker is an inversion of Square Logic in that the player is given a grid of numbers and
asked to find the constraints.

3.2 Extracting Messages from Running Programs
Completely ignoring program structure, we can look at the relevant program state space (data that
is actually touched by the loop) as a set of anonymous numerical values. At the end of a given loop
iteration, that numerical state can be represented as a line of numbers, like this:

0 10 10 5 12 3

Lines from multiple iterations can be stacked, in order, to form a complete, multi-line message
like this:

0 10 10 5 12 3
1 10 10 5 12 3
2 12 10 5 12 3

Finally, columns in a given message can be assigned anonymous labels like this:

A B C D E F
0 10 10 5 12 3
1 10 10 5 12 3
2 12 10 5 12 3

3.3 Player Goal
Given a multi-line messages like the one shown above, the player attempts to define constraints
that describe each line in the message. Looking at the given message, the player might propose the
following constraint:

B ≤ E

2

90
Approved for Public Release; Distribution Unlimited

3.4 Goal Iteration
A player-proposed constraint might be satisfied by the current messages or even by all sample
messages that the player has seen so far. However, there might be other messages from the same
source that break the proposed constraint. The player is presented with such a counter-example:

A B C D E F
0 10 10 5 2 3
1 10 10 5 2 3
2 10 10 5 2 3

Clearly, B ≤ E doesn’t hold for this message. The player might think that B ≤ C could work,
but that would be violated by the previously-seen message. Stumped, the player requests another
example message:

A B C D E F
0 10 10 15 2 3
1 15 10 15 2 3
2 15 10 15 2 3

Now it becomes clear that B takes on the maximum value of C, D, and E, so the player might
propose:

B ≤ max(C, D, E)

And this, it turns out, is satisfied by all messages with that line length. A longer message from
the same source is presented to the player as a new counter-example:

A B C D E F G
0 10 10 15 2 16 4
1 15 10 15 2 16 4
2 15 10 15 2 16 4
3 16 10 15 2 16 4

While the same max relationship is present here, it’s clear that a variable number of columns
must be accounted for. The player tries:

B ≤ max(colspan(C, A))

Where the colspan operator extracts the set of columns starting at C and moving A columns to the
right.

And, it turns out that all messages from this source satisfy that constraint. The player submits
her solution and moves on to tackle message from a different source.

3

91
Approved for Public Release; Distribution Unlimited

3.5 Meager Solutions
Of course, the rather tight constraint discovered by the previous player required quite a bit of
insight and effort. A more loose constraint might be proposed by a less industrious player:

A ≤ lastColumn

Where the lastColumn operator picks the value of the last column in a given line. Yes, all messages
satisfy the constraint, and in fact, this particular constraint was missed by the previous player.
These two constraints could be combined into the following set, which is stronger than either in
isolation:

B ≤ max(colspan(C, A))

A ≤ lastColumn
Thus, players can build on each other’s constraints to find even better constraints for the mes-

sages from a given source.

3.6 Underlying Code
The above “messages” were actually the state space extracted from the end of each loop iteration
in the following function:

arrayMax(a, n)
m = INT_MIN

for(i=0; i<n; i++)
if(a[i] > m)

m = a[i]

return m

with the following mapping:
Code Variable: Message Column:

i A
m B
a C · · · prevCol(lastCol)
n lastCol

The key insight in this kind of mapping is that though arrayMax can handle input of arbitrary
length, a given instance of its invocation always involves a finite state space. Furthermore, use-
ful pattern information can be gleaned, as demonstrated above, from extremely small invocation
examples. Yes, though the example function might process thousand-variable state spaces in prac-
tice, such examples don’t provide more information about constraint patterns than much smaller
examples. Loops behave inductively, after all, so we don’t need to worry about how our system
scales to huge state spaces.

4

92
Approved for Public Release; Distribution Unlimited

4 Presentation
The enormous popularity of Sudoku, Drop7, and Square Logic suggests that casual players don’t
have trouble with logical or mathematical reasoning. However, there’s no sense in overloading
the presentation of Code Breaker with unfamiliar symbols (even the difference between < and ≤
might not be clear to non-programmers).

Instead of asking the player to type in constraint formulas, we can ask them to construct a
pattern machine that matches lines from messages. The anonymous column names (A, B, C, etc.)
can be disks for dragging and dropping. Operators (+, −, ×, ÷) can be blocks that connect disks
together. Relationship operators, such as the aforementioned < and ≤, can become blocks with
explanatory icons (sloping right triangles).

Aggregation operations, like min and max, can become containers where other blocks can be
dropped inside. The colspan operator can be a block with two slots in it (one slot for the first
column name, and the second slot for an expression describing the column extent).

Players can then run their pattern machine on a message, line by line, to see where the message
breaks their machine.

5

93
Approved for Public Release; Distribution Unlimited

CHEKOFV Final Report

Appendix 2

Loop Analysis in BIND/lib

Huascar Sanchez

94
Approved for Public Release; Distribution Unlimited

7KLV�WDON�LQ�RQH�VOLGH

Ɣ +RZ�PDQ\�ORRSV�WKHUH�DUH�LQ�%,1'�OLE"
Ɣ :KDW�LV�WKH�UDQJH�RI�ORRSV�LQ�%,1'�OLE"
Ɣ :KDW�LV�WKH�UDQJH�RI�GDWD�W\SHV�DQG�GDWD�

VWUXFWXUHV�XVHG�LQ�WKHVH�ORRSV"
Ɣ 6XPPDU\�RI�UHVXOWV

+RZ�PDQ\�ORRSV�WKHUH�DUH�LQ�%,1'�OLE"
'LUHFWRU\ :KLOH�ORRSV)RU�ORRSV 7RWDO�ORRSV

OLE�GQV ���� ��� ����

OLE�ELQG� � �� ��

OLE�H[SRUW �� �� ��

OLE�LUV �� �� ��

OLE�LVF ��� ��� ���

OLE�LVFFF � �� ��

OLE�LVFFIJ ��� �� ���

OLE�OZUHV �� �� ���

OLE�WHVWV �� � ��

7RWDOV ���� ���� ����

7KH�UDQJH�RI�ORRSV�LQ�%,1'�OLE

Ɣ /RRSV�DUH�QRW�FUHDWHG�HTXDO��
ż 6RPH�KDYH�YHU\�FRPSOH[�FRQGLWLRQDOV��RWKHUV�

DUH�VLPSOH�
ż 6RPH�KDYH�QR�IXQFWLRQ�PHWKRG�FDOOV�LQVLGH�

WKHP��RWKHUV�KDYH�ORWV����
ż 6RPH�PD\�KDYH�PDQ\�LQWHUQDO�VWDWHPHQWV��

RWKHUV�YHU\�IHZ���RU�QRQH����
Ɣ &RQVHTXHQWO\��ZH�K\SRWKHVL]H�WKDW�E\�ORRNLQJ�DW�D�

ODUJH�HQRXJK�VDPSOH�IURP�%,1'��ZH
OO�GLVFRYHU�
ORJLFDO�FOXVWHULQJV�FRQWDLQLQJ�ORRSV�ZLWK�VLPLODU�
SURSHUWLHV��L�H���PDUNHUV��

7KH�UDQJH�RI�ORRSV�LQ�%,1'�OLE

Ɣ 7KLV�VDPSOH�PXVW�EH�VPDOO�HQRXJK�WR�EH�
FRQYHQLHQWO\�KDQGOHG�E\�XV��\HW�ODUJH�
HQRXJK�WR�KHOS�XV�GHWHFW�PHDQLQJIXO�
SDWWHUQV
ż H�J���FRQWURO�EUHDNV��HDUO\�H[LW��FRQWLQXDWLRQ�ZLWK�QH[W�

LWHUDWLRQ���
Ɣ :H�UDQGRPO\�VHOHFWHG�����ORRSV�
Ɣ 7KLV�VDPSOH�FRQWDLQHG�D�PL[�RI�ZKLOH��IRU��

DQG�GR�ZKLOH�ORRSV�

7KH�UDQJH�RI�ORRSV�LQ�%,1'�OLE

Ɣ 7R�KHOS�XV�H[DPLQH�ORRSV�LQ�%,1'��ZH
YH�XVHG�
D�VHW�RI�PDUNHUV�

Ɣ 7KHVH�PDUNHUV�ZHUH�KDQG\�IRU�UHDVRQLQJ�DERXW�
WKH�ORRSV
�LQWHUQDOV�������
ż 8SGDWH��8���H�J���UHVXOW� �,6&B68&&(66
ż &RQWURO�%UHDN��&%���H�J���LI�FRQGLWLRQ�^�83'$7(�`
ż (DUO\�([LW��((���H�J���EUHDN��UHWXUQ�'7��JRWR�

/$%(/�
ż &RQWLQXH�ZLWK�QH[W�,WHUDWLRQ��&1���H�J���FRQWLQXH�
ż ,QQHU�/RRSV��,1���
ż $1<��$���

:KDW�LV�WKH�UDQJH�RI�ORRSV�LQ�%,1'�OLE��:+,/(�"

%\�XVLQJ�WKHVH�PDUNHUV��ZH
YH�LGHQWLILHG���
FODVVHV�RI�:KLOH�ORRSV�LQ�%LQG�
&ODVV 3DWWHUQ &RXQW

:� �8��&%� �

:� �8��&%��8� �

:� �&%��8� �

:� �8� �

:� �8��,/��8� �

:� �8��&%��((��,/��8�_�((� �

:� �8�_�$���((�_�&1��&%�_�8�_�$�� �

95
Approved for Public Release; Distribution Unlimited

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

*HQHUDO�&DVH

ZKLOH��FRQGLWLRQ��^
����� 83'$7(
����� &21752/B%5($.

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

&RQFUHWH�&DVH
ILOH����������OLE�ELQG��FKHFN�F
IXQFWLRQ���FKHFNBYLHZDFOV

ZKLOH��DFOV>L@�� �18//��^

����WUHVXOW� �FKHFNDFO�DFOV>L��@��DFW[��18//��

���� �YRSWLRQV��FRQILJ��

���� �ORJFW[��PFW[��

����LI��WUHVXOW�� �,6&B5B68&&(66�

��������UHVXOW� �WUHVXOW�

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

*HQHUDO�&DVH

ZKLOH��FRQGLWLRQ��^
����� 83'$7(
����� &21752/B%5($.

83'$7(
`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

&RQFUHWH�&DVH
ILOH����������OLE�LUV�JHWDGGULQIR�F
IXQFWLRQ��IUHHDGGULQIR

ZKLOH��DL�� �18//��^

����DLBQH[W� �DL�!DLBQH[W�

����LI��DL�!DLBDGGU�� �18//�IUHH�DL�!DLBDGGU��

����LI��DL�!DLBFDQRQQDPH��

��������IUHH�DL�!DLBFDQRQQDPH��

����IUHH�DL��

����DL� �DLBQH[W�

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

*HQHUDO�&DVH

ZKLOH��FRQGLWLRQ��^
����� &21752/B%5($.

83'$7(
`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

&RQFUHWH�&DVH
ILOH����������OLE�GQV�DGE�F
IXQFWLRQ���GXPSBDGE

ZKLOH��HQWU\�� �18//��^

����LI��HQWU\�!UHIFQW� ���

��������GXPSBHQWU\�I��HQWU\��GHEXJ��QRZ��

����HQWU\� �,6&B/,67B1(;7�HQWU\��SOLQN��

`

96
Approved for Public Release; Distribution Unlimited

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

*HQHUDO�&DVH

ZKLOH��FRQGLWLRQ��^
83'$7(

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

&RQFUHWH�&DVH
ILOH����������OLE�H[SRUW�VDPSOHV�VDPSOH�XSGDWH�F
IXQFWLRQ��PDLQ

ZKLOH���EXI� �,6&B/,67B+($'�XVHGEXIIHUV���� �18//��^

����,6&B/,67B81/,1.�XVHGEXIIHUV��EXI��OLQN��

����LVFBEXIIHUBIUHH�	EXI��

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

*HQHUDO�&DVH

ZKLOH��FRQGLWLRQ��^
83'$7(

� ,11(5B/223
83'$7(

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

&RQFUHWH�&DVH
ILOH����������OLE�H[SRUW�VDPSOHV�QVSUREH�F
IXQFWLRQ��UHVHWBSUREH

ZKLOH���SQV� �,6&B/,67B+($'�WUDQV�!QVOLVW���� �18//��^

���� ,6&B/,67B81/,1.�WUDQV�!QVOLVW��SQV��OLQN��

���� ZKLOH���VHUYHU� �,6&B/,67B+($'�SQV�!VHUYHUV���� �18//��^

�������� ,6&B/,67B81/,1.�SQV�!VHUYHUV��VHUYHU��OLQN��

�������� LVFBPHPBSXW�PFW[��VHUYHU��VL]HRI�VHUYHU���

���� `

���� LVFBPHPBSXW�PFW[��SQV��VL]HRI�SQV���

����`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

*HQHUDO�&DVH

ZKLOH��FRQGLWLRQ��^
83'$7(

� &21752/B%5($.
($5/<B(;,7
,11(5B/223

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

&RQFUHWH�&DVH
ILOH����������OLE�LVF�EDVH���F
IXQFWLRQ��EDVH��BWREXIIHU

ZKLOH���FW[�VHHQBHQG�		��FW[�OHQJWK�� �����^

����XQVLJQHG�LQW�L�

����LI��OHQJWK�!����^�HRO� �,6&B)$/6(��`��HOVH�^�HRO� �,6&B758(��`

����5(7(55�LVFBOH[BJHWPDVWHUWRNHQ�OH[HU��	WRNHQ�

����������������������LVFBWRNHQW\SHBVWULQJ��HRO���

����LI��WRNHQ�W\SH�� �LVFBWRNHQW\SHBVWULQJ��^�EUHDN��`

����WU� �	WRNHQ�YDOXH�DVBWH[WUHJLRQ�

����IRU��L� ����L���WU�!OHQJWK��L���

��������5(7(55�EDVH��BGHFRGHBFKDU�	FW[��WU�!EDVH>L@���

`

97
Approved for Public Release; Distribution Unlimited

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

*HQHUDO�&DVH

ZKLOH��FRQGLWLRQ��^
($5/<B(;,7

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

&RQFUHWH�&DVH
ILOH����������OLE�LVF�LQFOXGH�LVF�UDGL[�K
IXQFWLRQ��KDVBZKLWHVSDFH

ZKLOH���F� �VWU����� �
?�
��^

����LI��F� �
�
�__�F� �
?W
�__�F� �
?Q
�

��������UHWXUQ��,6&B758(��

`

:KDW�LV�WKH�UDQJH�RI�GDWD�W\SHV�DQG�
VWUXFWV�XVHG�LQ�WKHVH�ORRSV"�

:KDW�LV�WKH�UDQJH�RI�GDWD�W\SHV�DQG�
VWUXFWV�XVHG�LQ�WKHVH�ORRSV"�

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)25�

:H
YH�LGHQWLILHG���FODVVHV�RI�)RU�ORRSV�LQ�%LQG�

&ODVV 3DWWHUQ &RXQW

)� �8��&%� ��

)� �8��((� �

)� �8� ��

)� ��$���,11(5B/223��$�� �

)� �8��&1��&%��8��&%� �

)� �8��((��&1��8� �

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

*HQHUDO�&DVH

IRU��FRQGLWLRQ��^
����� 83'$7(
����� &21752/B%5($.

`

98
Approved for Public Release; Distribution Unlimited

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

&RQFUHWH�&DVH
ILOH����������OLE�ELQG��FKHFN�F
IXQFWLRQ��FKHFNBRUGHU

IRU��HOHPHQW� �FIJBOLVWBILUVW�REM��

���������HOHPHQW�� � 18//�

���������HOHPHQW� �FIJBOLVWBQH[W�HOHPHQW��

����^

��������WUHVXOW� �FKHFNBRUGHUHQW� FIJBOLVWHOWBYDOXH �HOHPHQW���ORJFW[��

��������LI��WUHVXOW�� �,6&B5B68&&(66�

������������UHVXOW� �WUHVXOW�

����`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

*HQHUDO�&DVH

IRU��FRQGLWLRQ��^
����� 83'$7(
����� ($5/<B(;,7

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

&RQFUHWH�&DVH
ILOH����������OLE�ELQG��FKHFN�F
IXQFWLRQ��ELQG�BFKHFNBNH\

IRU��L� ����DOJRULWKPV>L@�QDPH�� � 18//��L����^

��������OHQ� �VWUOHQ�DOJRULWKPV>L@ �QDPH��

��������LI��VWUQFDVHFPS�DOJRULWKPV>L@�QDPH��DOJRULWKP��OHQ�� ���		

�������������DOJRULWKP>OHQ@� �
?�
�__

��������������DOJRULWKPV>L@ �VL]H�� ���		�DOJRULWKP>OHQ@� �
�
���

������������EUHDN�

����`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

*HQHUDO�&DVH

IRU��FRQGLWLRQ��^
����� 83'$7(

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

&RQFUHWH�&DVH
ILOH����������OLE�GQV�MRXUQDO�F
IXQFWLRQ��MRXUQDOBRSHQ

IRU��L� ����L���M�!KHDGHU�LQGH[BVL]H��L����^

����M�!LQGH[>L@�VHULDO� �GHFRGHBXLQW���S��

����S�� ���

����M�!LQGH[>L@�RIIVHW� �GHFRGHBXLQW���S��

����S�� ���

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

*HQHUDO�&DVH

IRU��FRQGLWLRQ��^
��������

����� ,11(5B/223
����

`

99
Approved for Public Release; Distribution Unlimited

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

&RQFUHWH�&DVH
ILOH����������OLE�OZUHV�JHWDGGULQIR�F
IXQFWLRQ��OZUHVBVWUVHSW

IRU��V� �VWULQJ��V�� �
?�
��V����^

����VF� �V�

����IRU��G� �GHOLP���GF� �G��� �
?�
��G���

��������LI��VF� �GF��^

�����������V��� �
?�
�

�����������VWULQJS� �V�

�����������UHWXUQ��VWULQJ��

����`

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

*HQHUDO�&DVH

IRU��FRQGLWLRQ��^
����83'$7(

����� &217,18(
&21752/B%5($.
83'$7(
&21752/B%5($.

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

&RQFUHWH�&DVH
ILOH����������OLE�ELQG��FKHFN�F
IXQFWLRQ��FKHFNBGXDOBVWDFN

IRU��HOHPHQW� �FIJBOLVWBILUVW�REM��

�����HOHPHQW�� �18//�

�����HOHPHQW� �FIJBOLVWBQH[W�HOHPHQW���^

����YDOXH� �FIJBOLVWHOWBYDOXH�HOHPHQW��

����LI��FIJBREMBLVVRFNDGGU�YDOXH��

��������FRQWLQXH�

����REM� �FIJBWXSOHBJHW�YDOXH���QDPH���

����VWU� �FIJBREMBDVVWULQJ�REM��

����LVFBEXIIHUBLQLW�	EXIIHU��VWU��VWUOHQ�VWU���

����LVFBEXIIHUBDGG�	EXIIHU��VWUOHQ�VWU���

����GQVBIL[HGQDPHBLQLW�	IL[HG��

����QDPH� �GQVBIL[HGQDPHBQDPH�	IL[HG��

����WUHVXOW� �GQVBQDPHBIURPWH[W�QDPH��

����������������	EXIIHU��GQVBURRWQDPH�

�����������������������18//��

LI��WUHVXOW�� �,6&B5B68&&(66��^
��������FIJBREMBORJ�REM��ORJFW[��,6&B/2*B(5525�
�����������������EDG�QDPH�
�V
���VWU��
��������UHVXOW� �,6&B5B)$,/85(�
����`
����REM� �FIJBWXSOHBJHW�YDOXH���SRUW���
����LI��FIJBREMBLVXLQW���REM���^
��������LVFBXLQW��BW�YDO� �FIJBREMBDVXLQW���REM��
��������LI��YDO�!�,6&B8,17��B0$;��^
������������FIJBREMBORJ�REM��ORJFW[��,6&B/2*B(5525�
���������������������SRUW�
�X
�RXW�RI�UDQJH���YDO��
������������UHVXOW� �,6&B5B)$,/85(�
��������`
����`
`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

*HQHUDO�&DVH

IRU��FRQGLWLRQ��^
����83'$7(

����� ($5/<B(;,7
&217,18(
83'$7(

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

&RQFUHWH�&DVH
ILOH����������OLE�LVF�EDVH���F
IXQFWLRQ��EDVH��BGHFRGHVWULQJ

IRU������^

����LQW�F� �FVWU���

����LI��F� �
?�
�

��������EUHDN�

����LI��F� �
�
�__�F� �
?W
�__�F� �
?Q
�__�F �
?U
�

��������FRQWLQXH�

����5(7(55�EDVH��BGHFRGHBFKDU�	FW[��F���

`

:KDW�LV�WKH�UDQJH�RI�GDWD�W\SHV�DQG�
VWUXFWV�XVHG�LQ�WKHVH�ORRSV"�

100
Approved for Public Release; Distribution Unlimited

:KDW�LV�WKH�UDQJH�RI�GDWD�W\SHV�DQG�
VWUXFWV�XVHG�LQ�WKHVH�ORRSV"� $�IHZ�VWUXFW�GHILQLWLRQV

FIJBREM
ILOH���������OLE�LVFFIJ�LQFOXGH�LVFFIJ�JUDPPDU�K
VWUXFW�FIJBREM�^�FRQVW�FIJBW\SHBW�W\SH�

��������XQLRQ�^�LVFBXLQW��BW����������XLQW���

����������������LVFBXLQW��BW����������XLQW���

����������������LVFBWH[WUHJLRQBW�VWULQJ������QXOO�WHUPLQDWHG��WRR��

����������������LVFBERROHDQBW���������ERROHDQ�

����������������FIJBPDSBW�������������PDS�

����������������FIJBOLVWBW������������OLVW�

����������������FIJBREMBW�����������WXSOH�

����������������LVFBVRFNDGGUBW��������VRFNDGGU�

����������������FIJBQHWSUHIL[BW�QHWSUHIL[�

��������`���������������YDOXH�

��������LVFBUHIFRXQWBW��UHIHUHQFHV����������UHIHUHQFH�FRXQWHU��

��������FRQVW�FKDU�����ILOH�

��������XQVLJQHG�LQW����OLQH� �

`�

$�IHZ�VWUXFW�GHILQLWLRQV

LVFBWH[WUHJLRQ
ILOH���OLE�LVF�LQFOXGH�LVF�UHJLRQ�K

VWUXFW�LVFBWH[WUHJLRQ�^

��������FKDU���������������EDVH�

��������XQVLJQHG�LQW��������OHQJWK�

`�

$�IHZ�VWUXFW�GHILQLWLRQV

LVFBPHP
ILOH���OLE�LVF�LQFOXGH�LVF�PHP�K

VWUXFW�LVFBPHP�^

��������XQVLJQHG�LQW������������LPSPDJLF�

��������XQVLJQHG�LQW������������PDJLF�

��������LVFBPHPPHWKRGVBW��������PHWKRGV�

`�

$�IHZ�VWUXFW�GHILQLWLRQV

LVFBEXIIHU
ILOH���OLE�LVF�LQFOXGH�LVF�EXIIHU�K

VWUXFW�LVFBEXIIHU�^

��������XQVLJQHG�LQW����������������PDJLF�

��������YRLG�����������������������EDVH�

��������XQVLJQHG�LQW����������������OHQJWK�

��������XQVLJQHG�LQW����������������XVHG�

��������XQVLJQHG�LQW����������������FXUUHQW�

��������XQVLJQHG�LQW����������������DFWLYH�

��������,6&B/,1.�LVFBEXIIHUBW�������OLQN�

��������LVFBPHPBW�������������������PFW[�

`�

&RPPHQWV�VXPPDU\

Ɣ 7KH�WRWDO�QXPEHU�RI�ORRSV�LQ�%,1'�OLE�LV������
ż :KLOH�ORRSV�DUH�����
ż)RU�ORRSV�DUH�����

Ɣ :H
YH�LGHQWLILHG���FODVVHV�RI�:KLOH�ORRSV�DQG���
FODVVHV�RI�)RU�ORRSV�EDVHG�RQ�WKH�XVH�RI�D�VHW�
RI�PDUNHUV�

Ɣ 0RUH�FOXVWHUV�FDQ�EH�IRXQG�E\�XVLQJ�VKDUHG�
GDWD�W\SHV��

Ɣ 7KH�PRVW�SRSXODU�VWUXFWV�DFURVV�DOO�WKH�:KLOH�
ORRS�FODVVHV�LQFOXGH�
ż LVFBUHJLRQ
ż LVFBPHP

101
Approved for Public Release; Distribution Unlimited

&RPPHQWV�VXPPDU\

Ɣ 7KH�PRVW�SRSXODU�VWUXFWV�DFURVV�DOO�WKH�)RU�ORRS�
FODVVHV�LQFOXGH�
ż FIJBREM
ż LVFBORJ
ż GQVBDFDFKH

Ɣ 7KH�PRVW�SRSXODU�GDWD�W\SHV��LQFOXGLQJ�18//�
YDOXHV��DFURVV�WKH�:KLOH�ORRS�FODVVHV�LQFOXGH�
ż LQW
ż LVFBERROHDQBW
ż XQVLJQHG�LQW
ż 18//
ż FKDU�EXIIHU���

&RPPHQWV�VXPPDU\

Ɣ 7KH�PRVW�SRSXODU�GDWD�W\SHV��LQFOXGLQJ�
18//�YDOXHV��DFURVV�WKH�)RU�ORRS�FODVVHV�
LQFOXGH�
ż XQVLJQHG�LQW
ż 18//
ż FKDU�EXIIHU
ż LQW
ż LVFBXLQW��BW

102
Approved for Public Release; Distribution Unlimited

CHEKOFV Final Report

Appendix 3

CHEKOFV Ranking System (CRS)
Maria Daltayanni

103
Approved for Public Release; Distribution Unlimited

GameRank API Methods

def add_outcome(realm_id, user_id, problem_id, invariant_id, d)
This adds the result of a user solution on a problem. Check that they have unique user_id and
problem_id that we can use. The score is a non-negative (?) (? they do not know, probably
non negative) floating point number, reflecting the correctness of the solution proposed by the
user. No special assumption is made on these solution scores.
Problem: Do the user_id and problem_id need to exist already on our side or not? Yes

Or do we have to implement create_user() and create_problem methods? No

For us, the main use of a create_user() … method is that it ensures that we have the same
basic information for all users, since we cannot guarantee that update_user_info below is going
to be called.
d is a dictionary containing:
This data is available:

● score of solution
● duration of solution attempt
● gave_up: boolean flag indicating whether a solution was entered
● List of (start_time, end_time) of all time spans when the game was played (note: do you

prefer to update this information as time goes by, via a method called
add_outcome_info? No - Or give it to us only once the play ends? Yes).

● Platform on which game was played (phone, tablet, PC, etc)
● Location / interactivity level info (is a player playing in a stationary room, or just toying

with it in a bus?). ? not surely available
● played in a tournament or in collaboration: not sure they have it for everyone

Questions: do they give us an invariant_id or do they call add_outcome and we return an
invariant_id? They give it to us
Do we have to give methods also to delete an outcome? Or delete all outcomes for a problem?
Yes

def delete_outcome(realm_id, user_id, problem_id, invariant_id)

def delete_all_outcomes_for_problem (realm_id, problem_id)

Or for a player? No

Question: should we have a single reputation system, or should we have “realms”, and prefix
every call with a realm_id? We need a testing realm and a production realm, at least. Ok with
these 2 realms for the beginning. If we need more reputation systems, e.g. for different

skills, we can have more realms.

def update_user_info(realm_id, user_id, d)

104
Approved for Public Release; Distribution Unlimited

This is used to let our ranking system know about the existing level of a user, as chosen by the
game system. d is a dictionary of things that can be changed (only the changed items are
defined) :

● Player level in the game
● Player ability in a scale, as defined by developers
● How long the user exists

def update_problem_info(realm_id, problem_id, d)
d is a dictionary containing:

● Problem level as defined by developers

def get_latest_solution_date(realm_id)
Returns a datetime in UTC.
To know how old the data is - did the server get stuck, or is it fresh?

def get_user_info(realm_id, user_id)
Returns:

● Datetime in UTC of when the solution was computed.
● User rank in the system, as percentile, with an error estimate. Example: 10-15% rank.
● Floating-point rank, with no special semantics attached, except that it gives the same

ordering as the percentiles above.
● N. of problems the user played.

Not necessary to be provided from our side

(

def get_play_info(realm_id, user_id, problem_id)

Returns:

● The score of the play

● The time it took for the play

● The time when the play took place

● Play level: how far the user has gone

def get_user_problems(realm_id, user_id)

Returns the list of problems the user played.

def get_problem_users(realm_id, problem_id)

Returns the list of players that played a given problem.

)

def get_problem_info(realm_id, problem_id)
Returns (in general, return a dictionary):

● Datetime in UTC of solution
● Rank and error in rank of problem among problems

105
Approved for Public Release; Distribution Unlimited

● N. of users who played the problem
● Average rank in game of players who played the problem...
● How many players gave up
● Average rank of players who gave up...

106
Approved for Public Release; Distribution Unlimited

def add_outcome(realm_id, user_id, problem_id, invariant_id, d)
d:

● score of solution
● duration of solution attempt
● gave_up: boolean flag indicating whether a solution was entered
● List of (start_time, end_time) of all time spans when the game was played
● Platform on which game was played (phone, tablet, PC, etc)

def delete_outcome(realm_id, user_id, problem_id, invariant_id)

def delete_all_outcomes_for_problem (realm_id, problem_id)

def update_user_info(realm_id, user_id, d)
d:

● Player level in the game
● Player ability in a scale, as defined by developers
● How long the user exists

def update_problem_info(realm_id, problem_id, d)
d:

● Problem level as defined by developers

def get_latest_solution_date(realm_id)

def get_user_info(realm_id, user_id)
Returns:

● Datetime in UTC of when the solution was computed.
● User rank in the system, as percentile, with an error estimate. Example: 10-15% rank.
● Floating-point rank, with no special semantics attached, except that it gives the same

ordering as the percentiles above.
● N. of problems the user played.

def get_problem_info(realm_id, problem_id)
Returns (in general, return a dictionary):

● Datetime in UTC of solution
● Rank and error in rank of problem among problems
● N. of users who played the problem
● Average rank in game of players who played the problem...
● How many players gave up
● Average rank of players who gave up...

107
Approved for Public Release; Distribution Unlimited

CHEKOFV Final Report

Appendix 4

CyphrSeedr Tutorial Design Document

Lauren Scott

108
Approved for Public Release; Distribution Unlimited

1

CyphrSeedr Tutorial Design

Document

109
Approved for Public Release; Distribution Unlimited

2

Table of Contents

Overview 3

Concepts to Teach Within the Tutorial 4

Sample Levels 5

110
Approved for Public Release; Distribution Unlimited

3

Overview

The aim of the CyphrSeedr tutorial is to introduce the basics of the game in a logical,
coherent progression. The most important aspects of the game to be introduced here are the
most basic invariants, which will reflect the more complex invariants that could be introduced
in the game via "live" code, as well as the primary and secondary UI elements of the game.

111
Approved for Public Release; Distribution Unlimited

4

Concepts to Teach Within the Tutorial

1. Preliminary User Interface
a. How to use the slider & its representation
b. What each symbol (i.e., Height, Leaves) means & represents
c. How to use the toolkit/workspace

- The less-than tool <
- The greater-than tool >
- The equals tool =
- The plus tool +
- The minus tool -
- The constant tools 1, 100, 0, etc.
- The variable tools (symbols)
- The structures for the tools (Scratch-like templates)
- The recycling bin
- The trash (red?) button

d. The star scoring system

2. Secondary User Interface
a. The data overlay tools

3. Pattern finding for loop invariants
a. One variable changing in a constant way
b. One variable changing in a not-constant way
c. Two variables changing in a not-constant way (no relationship)
d. Two variables changing together in a constant way
e. Linear relationships between two variables

4. Different Data Structures
a. Simple integer relationships
b. One-dimensional arrays
c. Two-dimensional arrays
d. Linked lists with integer data
e. Linked lists with other data
f. Stacks
g. Queues
h. Trees

112
Approved for Public Release; Distribution Unlimited

5

Sample Levels

113
Approved for Public Release; Distribution Unlimited

6

Sample Level 1

Code Sample:
i = 1;
while (i < 5 && i > 0) {

i++;
}

Invariant(s):
1. i >= 1
2. i <= 5

Representation:

i = Height,

= 1 = 2 = 3

Concepts to be Conveyed: Because this is the first level, it is necessary to introduce more
than one basic concept; this will not be the case for the rest.

1. The slider & its representation
2. One variable changing in a constant way
3. The < and/or > and/or = tools
4. The variable tools

114
Approved for Public Release; Distribution Unlimited

7

Sample Level 2

Code Sample:
i = 10;
while (i > 0 && i < 15) {

i--;
}

Invariant(s):
1. i >= 0
2. i <= 15

Representation:

i = Height,

= 10 = 9 = 8

Concepts to be Conveyed:
1. One variable changing in a constant (but different) way.

115
Approved for Public Release; Distribution Unlimited

8

Sample Level 3

Code Sample:
i = 5;
while (i > 0 && i < 5) {

i = 5;
}

Invariant(s):
1. i = 5

Representation:

i = Height,

= 5 = 5 = 5

Concepts to be Conveyed:
1. The notion of a constant variable.

116
Approved for Public Release; Distribution Unlimited

9

Sample Level 4

Code Sample:
i = 1;
y = 1;
while (i > 0 && y > 0) {

i++;
y++;

}

Invariant(s):
1. i = y

Representation:

i = Height,

y = Leaves,

= 1 = 2 = 3

 = 1 = 2 = 3

Concepts to be Conveyed:
1. Two variables.

117
Approved for Public Release; Distribution Unlimited

10

Sample Level 5

Code Sample:
i = 1;
y = 0;
while (i < 5 && i > 0) {

i++;
y = 2i;

}

Invariant(s):
1. y = 2i
2. i < 5
3. i > 0
4. y > 0

Representation:

i = Height,

y = Leaves,

= 1 = 2 = 3

 = 2 = 4 = 6

Concepts to be Conveyed:
1. Two variables changing in a different constant way.

118
Approved for Public Release; Distribution Unlimited

11

Sample Level 6

Code Sample:
i = 5;
y = 0;
while (i < 6 && i > 0) {

i--;
y ++;

}

Invariant(s):
1. i > 0

Representation:

i = Height,

y = Leaves,

= 5 = 4 = 3

 = 0 = 1 = 2

Concepts to be Conveyed:
1. Two variables changing in a different constant way.

119
Approved for Public Release; Distribution Unlimited

12

Sample Level 7

Code Sample:
i = 0;
y = 0;
while (i < 5 && i > 0) {

i++;
y = i²;

}

Invariant(s):
1. y = i²
2. i < 5
3. i > 0

Representation:

i = Height,

y = Leaves,

= 3 = 2 = 1

 = 9 = 4 = 1

Concepts to be Conveyed:
1. Negative numbers.

120
Approved for Public Release; Distribution Unlimited

13

Sample Level 8

Code Sample:
i = 0;
y = 0;
while (i < 5 && i > 0) {

y = 2i + 5;
i++;

}

Invariant(s):
1. y = 2i + 5

Representation:

i = Height,

y = Leaves,

= 0 = 1 = 2

 = 5 = 7 = 9

Concepts to be Conveyed:
1. Polynomial relationships.

121
Approved for Public Release; Distribution Unlimited

14

Sample Level 9

Code Sample:
i = 1;
while (i < 5 && i > 0) {

i = 2i;
}

Invariant(s):
1. i = 2i

Representation:

i = Height,

= 1 = 2 = 4

Concepts to be Conveyed:
1. One variable changing in a different constant way.

122
Approved for Public Release; Distribution Unlimited

15

Sample Level 10

Code Sample:
i = 1;
while (i < 5 && i > 0) {

i = 2i;
}

Invariant(s):
1. a[i] = i;

Representation:
Array is a rhizomatous plant (a plant with multiple identical sprouts, or nodes, whose
characteristics may vary).

a[i] = ith sprout's number of leaves,

 i = 1

 i = 2

 i = 3

Concepts to be Conveyed:
1. Arrays

- New tool(s)
- Visual representation

123
Approved for Public Release; Distribution Unlimited

CHEKOFV Final Report

Appendix 5

Crowdsourcing Program Preconditions via a Classification Game

Fava D, Shapiro D, Osborn J, Schäf M, & Whitehead EJ.

124
Approved for Public Release; Distribution Unlimited

Crowdsourcing Program Preconditions via a Classification

Game

Daniel Fava
University of California

Santa Cruz
dfava@soe.ucsc.edu

Dan Shapiro
University of California

Santa Cruz
dgs@ucsc.edu

Joseph Osborn
University of California

Santa Cruz
jcosborn@soe.ucsc.edu

Martin Schäef
SRI International

martin.schaef@sri.com

E. James Whitehead Jr.
University of California

Santa Cruz
ejw@soe.ucsc.edu

ABSTRACT
Invariant discovery is one of the central problems in software
verification. This paper reports on an approach that ad-
dresses this problem in a novel way; it crowdsources logical
expressions for likely invariants by turning invariant discov-
ery into a computer game. The game, called Binary Fission,
employs a classification model. In it, players compose pre-
conditions by separating program states that preserve or vi-
olate program assertions. The players have no special exper-
tise in formal methods or programming, and are not specifi-
cally aware they are solving verification tasks. We show that
Binary Fission players discover concise, general, novel, and
human readable program preconditions. This suggests that
crowdsourcing o↵ers a feasible and promising path towards
the practical application of verification technology.

1. INTRODUCTION
A key problem in software verification is to find abstrac-

tions that are su�ciently precise to enable the proof a de-
sired program property, but su�ciently general to allow an
automated tool to reason about the program. Various tech-
niques, such as predicate abstraction [2], interpolation [17],
logical abduction [7], and lately machine learning (e.g., [20,
25, 11]) have been proposed to automatically find such ab-
stractions by identifying suitable program invariants. Each
of these techniques provides its own approach for inventing
suitable predicates, but unfortunately, the space of possibil-
ities is essentially infinite and it is not currently possible to
find such predicates via automated methods.

The human process for finding invariants relies on highly
skilled people, schooled in formal methods, to reason from
the purpose of programs towards possible predicates. How-
ever, this approach has an issue of scale: millions of pro-
grams could benefit from formal verification, while there are

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

only a few thousand such experts world-wide. Automated
methods rely on search, and expectations to constrain the
predicate invention process. White box techniques lever-
age knowledge about program content to propose candidate
invariants, while black box methods search a space of tem-
plates (often boolean functions of linear inequalities) using
comparatively little knowledge of program structure.

Recent work on classification techniques employ data to
constrain predicate invention. Here, the objective is to in-
duce a boolean expression over a base set of predicates that
admits “good” program states (inputs that satisfy desired
properties encoded as assertions) while excluding all “bad”
states (input that violates such assertions on execution).
Machine learning methods are well-suited to this task [11,
13, 21, 20]. These techniques output likely invariants that
can be tested by static or dynamic analysis methods to de-
termine if they are invariant conditions of the underlying
program. The key issue in this approach is generalization;
useful invariants are broad statements while classification
methods tend to overfit the data. Moreover, the data on
good and bad program states necessary to achieve robust
generalization is in short supply, as program sampling is it-
self a hard task.

This paper reports on a classification based system that
addresses predicate invention in a novel way; it crowdsources
logical expressions for likely invariants by turning invariant
generation into a computer game. This approach has several
potential benefits:

• It can take advantage of the human ability to extract
general predicates from small amounts of data,

• It makes predicate invention accessible to a much larger
pool of individuals,

• It allows the crowd to compose unexpected, likely in-
variants that fully automated methods might miss.

In more detail, the game, called Binary Fission, addresses
the subtask of precondition mining; it assumes a set of an-
notations that encode desired properties, and seeks predi-
cates that imply the annotations hold under program ex-
ecution. Players function as classification engines, by col-
lectively composing likely invariants without any awareness
that they are performing program verification.

Binary Fission is an instance of a growing number of
games with a purpose [4, 12, 23], which share the premise

125
Approved for Public Release; Distribution Unlimited

that many di�cult and important tasks can be advanced by
crowdsourcing [19]. As such, Binary Fission is an existence
proof for crowdsourcing precondition mining. This paper
also demonstrate that it is e↵ective. We show that:

• The crowd employs Binary Fission to compose likely
invariants for non-trivial programs.

• A subset of those preconditions are program invariants.

• The program invariants are non-trivial, reasonably gen-
eral, and human readable.

In addition, we show that the results of Binary Fission are
novel relative to the output of DTinv [13] (a related, fully
automated classification system).

The following sections describe our approach and results.
We begin by framing this e↵ort against related work, and
introducing Binary Fission. Section 4 introduces the do-
main program we examine for preconditions, and then dis-
cusses our methodology for assembling crowdsourced likely
invariants from player contributions, extracting program in-
variants from that set, assessing the quality of crowdsourced
results. Section 5 presents results obtained with Binary Fis-
sion. Section 6 discusses the source of power behind these
results, while Section 7 examines threats to validity. We end
with concluding remarks.

2. RELATED WORK
The problem of finding suitable program invariants is a

central part of formal verification research. Striking the bal-
ance between an abstraction that is su�ciently precise to
prove a property and su�ciently abstract to reason about
is what makes program analysis scalable. In static analy-
sis, a variety of techniques exist to infer program invariants,
such as CEGAR [2], Craig interpolation [17], or logical ab-
duction [7]. However, these approaches have the inherent
limitation that they rely on information generated from the
source code of the analyzed program. If the needed invari-
ant is a relation between variables that cannot be inferred
from the source code, these techniques must fall back on
heuristics or fail to compute an invariant.

As an alternative to static invariant discovery, we have
seen an increasing activity in research on data driven ap-
proaches. A pioneer in this field is Daikon [9, 8, 10] which
takes a set of good program states as input and applies ma-
chine learning to find an invariant that describes all states
in this set. More recently, several approaches [11, 13, 21,
20] have extended this idea by learning invariants applying
di↵erent machine learning algorithms and by also consider-
ing sets of bad states that should be excluded by a likely
invariant. The benefit of machine learning or data driven
approaches over static invariant discovery is that these ap-
proaches can search for invariants in a larger space and dis-
cover invariants even if they are based on relations that are
not easily inferred from the program text. This paper ex-
plicitly compares results obtained by Binary Fission with
results obtained through DTinv [13], which provides a clas-
sification model that is very close in spirit to our work.

Since Binary Fission is a crowdsourcing game, it can viewed
as a game with a purpose (GWAP) [24]. Since Binary Fis-
sion involves people performing work that computers cannot,
it can also be viewed as a form of human computation (see
[1] for design issues concerning motivation and evaluation

in this context, and [16] for a survey of crowdsourcing in
software engineering). Since Binary Fission uses a game re-
ward system to motivate players, it is a form of gamification
[6]. We view Binary Fission as a deeper application of game
design principles than typical in gamification e↵orts, as it
simultaneously makes a hard science problem playable, and
disguises the core activity more than typical human compu-
tation tasks.

Overall, the idea of building crowdsourced games for hard
scientific tasks has shown enough promise to motivate a large
investment in this area. Binary Fission was developed as
part of the Crowd Sourced Formal Verification (CSFV) pro-
gram, funded by DARPA in the United States. This pro-
gram has resulted in the creation of ten games focused on the
intersection with formal software verification; a summary of
the games developed in this program can be found in [5],
and many of the games can be played at verigames.com.

3. BINARY FISSION
Binary Fission is a game for crowdsourcing program in-

variants. It is one of several recent e↵orts designed to exploit
the “wisdom of the crowd” by transforming hard scientific
problems into games [4, 12, 23]. Binary Fission is intended
for players with no expertise in formal verification methods,
and the players are at most peripherally aware that they are
solving verification problems through game play.

The game employs a classification metaphor for finding
invariants. At the technical level, it inputs a program anno-
tated with postconditions, a set of predicates relating pro-
gram variables, and two sets of initial program states (each
state is a vector of variable values), where “good” states sat-
isfy the assertions, and “bad” states violate those assertions
on program execution. Each Binary Fission player employs
the available predicates to find a classification tree that sepa-
rates good data from bad. This tree defines a logical formula
representing a likely invariant.

At the game level, Binary Fission hides the nature of the
program, data, and predicates from the player. Instead, it
presents players with a set of gold and blue “quarks” (rep-
resenting good and bad data, internally), mixed together
inside the nucleus of an “atom.” The player’s goal is to sep-
arate the gold from the blue quarks using a set of filters
(corresponding internally to predicates), which are capable
of splitting the atom’s nucleus. Di↵erent filters create dif-
ferent splits, and the player’s job is to decide which filters to
apply, and in what order. The recursive application of filters
leads to the creation of a binary tree, as shown in Figure 1.

Binary Fission imposes a 5 level depth limit on player
generated classification trees, which bounds the complexity
of the resulting classifiers. The game also provides a scoring
function (shown in Equation 1) that influences players to
create leaf nodes composed purely of good, or bad program
states (where the pure good nodes have special utility for
defining likely invariants).

N ⇥
X

i2leaf nodes

⇣
purity

A
i ⇥ size

B
i

⌘
(1)

Here, purity is the maximum over the percentage of good
states and the percentage of bad states in the node, and size

is a count of the quarks (states) in the node. A and B are
arbitrary constants. N is constant that increases with the
count of pure nodes, and decreases with maximum depth of

126
Approved for Public Release; Distribution Unlimited

Figure 1: Binary Fission Player Interface

the classification tree. It influences players to produce as
many pure nodes as possible, as early as possible, which is
a force towards producing useful, and general descriptors.

Each classification tree produced through Binary Fission
is typically partial: some leaf nodes only contain good states,
some only contain bad states, while others contain a mix-
ture. In addition, the solutions are idiosyncratic, as the play-
ers generally employ di↵erent subsets of filters during game
play. As a result, the game software combines descriptions
of pure good nodes and pure bad nodes across solutions to
obtain a consensus view of the likely invariant. We discuss
this process below.

4. METHODOLOGY
Our methodology for crowdsourcing precondition discov-

ery repeats the following steps:

1. Express an invariant generation task as a data classi-
fication problem.

2. Present the problem to Binary Fission players.

3. Assemble a likely invariant across player solutions.

4. Extract clauses from the likely invariant that satisfy
program assertions.

5. Assess utility of the program preconditions found.

Following these steps, we assess the value added by crowd-
sourcing invariants by comparing the results with the so-
lutions produced via an automated classification technique,
called DTInv [13]. The following sections clarify these tasks,
after introducing the domain problem we employ as a source
of invariant generation tasks.

4.1 The TCAS Program
TCAS is an aircraft collision avoidance software originally

created at Siemens Corporate Research in 1993. It has be-
come a common subject to verification methods and test
case generation systems since being incorporated into the
Software-artifact Infrastructure Repository [18]. The code
performs algebraic manipulations of 12 integer variables and

a constant four element array. It contains nested condition-
als and logical operators; there are no loops, dynamic mem-
ory allocations or pointer manipulation.

TCAS is written in 173 lines of C code split into nine
functions. As shown by the call graph in Figure 2, the main
function calls an initialization routine before transferring
control to alt_sep_test, which tests the altitude separation
between an aircraft and intruder that has entered its pro-
tected zone. TCAS then generates warnings, called “Tra�c
Advisories’ (TAs), and recommendations, called“Resolution
Advisories” (RAs), to the pilot. The TAs alert the pilot of
potential threats, while the RAs are proposed a maneuver
meant to safely increase the separation between planes.

Figure 2: TCAS call graph.

A theory for avoiding aircraft collisions determines when
certain maneuvers are safe; these conditions identify safety
properties that the TCAS implementation should ideally
guarantee. Table 1 illustrates some of these safety proper-
ties (reproduced from [3]). For example, the last two entries
specify that a maneuver that reduces the separation between
two planes must never be issued when the planes have in-
truded into each others’ protected space. These safety prop-
erties can be encoded as postconditions of the TCAS pro-
gram, via assertion statements at its end. The problem of
proving the TCAS program safe translates into the task of
verifying that the implementation cannot violate these as-
sertions.

We tackle a subtask of the verification process, which is,
to find suitable preconditions for TCAS functions. Func-
tion preconditions are conditional statements about program
variables; if they hold on input to the function, program ex-
ecution is guaranteed to produce the postconditions that
encode desired properties.

4.2 Framing Binary Fission Problems
We define seven precondition finding tasks from the TCAS

code. They are to discover preconditions for each of the func-
tions alt sep test, Non Crossing Biased Climb, Non Crossing
Biased Descend, Own Below Threat, Inhibit Biased Climb
and Own Above Threat as shown in Figure 2, where those
preconditions ensure the conjunction of program postcondi-
tions illustrated in Table 1.

We express these problems as Binary Fission classification

127
Approved for Public Release; Distribution Unlimited

Postcondition Explanation
If Up_Separation � Positive_RA_Alt_Thresh[2] ^ A downward RA is never issued if a downward

Down_Separation < Positive_RA_Alt_Thresh[2] maneuver does not produce adequate separation
Assert result 6= need_Downward_RA

If Up_Separation < Positive_RA_Alt_Tresh[2] ^ An upward RA is never issued if an upward
Down_Separation � Positive_RA_Alt_Tresh[2] maneuver does not produce adequate separation

Assert result 6= need_Upward_RA

If Own_Tracked_Alt > Other_Tracked_Alt A crossing RA is never issued
Assert result 6= need_Downward_RA

If Own_Tracked_Alt < Other_Tracked_Alt A crossing RA is never issued
Assert result 6= need_Upward_RA

If Down_Separation < Up_Separation The RA that produces less separation is never issued
Assert result 6= need_Downward_RA

If Down_Separation > Up_Separation The RA that produces less separation is never issued
Assert result 6= need_Upward_RA

Table 1: TCAS postconditions.

tasks by specifying {good states, bad states, predicates}
tuples. We obtain the state data by running a large set
of test cases on the underlying program and monitoring its
execution with a debugger. The TCAS repository supplies
test cases with the code. We collect the program state at the
entry point of each function, and monitor the program’s exit
status. If the input state satisfies end assertions we add that
vector of program variables to the good states. If it violates
assertions or causes the program to crash, we add it to the
set of bad states. We augment these states by randomly
sampling the variable ranges observed in the program test
cases, after validating with gcov [22] that the new values
exercise the same code paths. We retain these states in a
hold-out set for testing the generality of any preconditions
found, and do not present them to players.

Binary Fission can utilize logical predicates of any kind,
obtained from any source, with the caveat that they need to
be relevant to the classification task at hand in order to be
useful. Because TCAS performs algebraic manipulations, we
generate a base set of predicates by employing the Daikon
system [10], which is able to explain regularities in program
states by searching a library of structural forms. In partic-
ular, we supply Daikon with a small subset of good TCAS
program states (and separately, a small set of bad states),
and collect the candidate invariants it produces. For TCAS,
this set consists of several hundred boolean combinations of
equalities and inequalities among linear functions of 1-4 vari-
ables, including max and min operators, numeric thresholds,
and explicit set membership tests.

We present each of the {good states, bad states, predicates}
tuples generated in this way to multiple Binary Fission play-
ers who generate preconditions as a byproduct of game play.
Binary Fission is available on-line at http://binaryfission.
verigames.com, and we invite readers to try it. To date,
close to one thousand players have generated about three
thousand solutions for TCAS problems.

4.3 Assembling a Likely Invariant
Each classification tree generated by a Binary Fission player

separates program states into a collection of Pure Good,
Pure Bad, and Impure nodes (where a Pure node only con-
tains program states of one kind). As shown in Figure 3,
a conjunction of predicates that links the root to a Pure
Good node describes a set of states that satisfy program

assertions, and expresses a likely invariant. A single player
solution can contain several such paths. By extension, we
define the disjunction of paths to Pure Good nodes across
all player solutions as the consensus, likely invariant. This
results in an expression in Disjunctive Normal Form:

PureGoodConjunct

1

_ ... _ PureGoodConjunctn

Note that the individual conjuncts might be drawn from the
same or di↵erent classification trees. As a result, the con-
juncts might not employ the same variables, or be mutually
exclusive either as logical statements or in terms of the data
they explain.

It is tempting to employ the negation of predicates de-
scribing Pure Bad nodes across players instead, since an in-
variant that excludes Pure Bad states is potentially weaker,
and more desirable than an invariant that explicitly admits
only good states. However, given a partial classifier, the
logical expression ¬(PureBadConj

1

_ ..._PureBadConjm)
includes Impure nodes, and accepts bad states that cannot
be admitted by any invariant.

Figure 3: Example of a decision tree produced by

Binary Fission. Tracing from the root node to the

two pure positive nodes we have P ^ Q and ¬P ^ R

which form the candidate invariant (P ^Q)_(¬P ^R).

4.4 Extracting Program Invariants
Given a likely invariant expressed in DNF, we use the

CBMC bounded model checker [14] to identify any compo-

128
Approved for Public Release; Distribution Unlimited

nent conjuncts that qualify as program preconditions. That
is, if c

1

_ c

2

_ ... _ cn is a predicate derived from data
points from function my_func, we consider each clause ci for
i 2 {1, 2, ..., n} in turn. We place a check of its negation at
the entry of the function as shown on line 2 of Figure 4. We
then run CBMC on this modified program. When CBMC

1 my_func(args) {
2 if !(c_i) { exit (0) }
3 // Remainder of the function ...
4 }
5
6 my_func(args)
7 assert(postcondition)

Figure 4: Pseudocode showing program transforma-

tion for discovering function preconditions.

encounters the if-statement, it splits the analysis between
the two paths. The path in which ci is falsified dies when
it encounters exit(0). On the other hand, when ci is satis-
fied, the analysis continues and the model checker attempts
to find function arguments args that will later cause post-
condition violations (line 7 of Figure 4). If CBMC cannot
find inputs that satisfy ci and violate the postconditions,
then ci is a precondition of the function. The full Binary
Fission invariant is the disjunct of all clauses that satisfy
this test.

4.5 Assessing Invariant Utility
Assuming Binary Fission players discover likely invariants

and program preconditions, the next key concern is to eval-
uate the usefulness of those expressions. We would like to
show that crowdsourced results enable further derivation of
program properties, or facilitate practical application of the
code. We do not yet have that result for Binary Fission.
Instead, we assess the generality of the crowdsourced ex-
pressions by measuring their coverage against data. The
more data explained, the weaker the likely invariant or pre-
condition, and the more utility it o↵ers for further analyses.

Binary Fission relies on a classification technique to sepa-
rate good states from bad. However, classification methods
are prone to overfitting; they must guard against the ten-
dency to explain exactly and only the training data, with-
out providing insight into the general case represented by
the data not seen. Common defenses include penalizing
overly complex expressions considered during classification,
and testing against held back data to ensure the generality
of the induced function. We utilize both techniques here.
In particular, we rely on the Binary Fission scoring function
and depth limit to prevent overfitting, and we distinguish
training data from test sets.

In more detail, we measure expression generality against
a set composed of Good program states. To increase the
amount of data available, we interpolate between good states
supplied with the TCAS code, and ensure that new states
exercise the same code paths as the original states. We
measure coverage of likely invariants against the training
set, and coverage of preconditions against this new data,
which comprises the test set.

4.6 Assessing Invariant Novelty
In addition to assessing the utility of any invariants found,

we examine the conjecture that crowdsourced invariants are
novel relative to the results obtained through other meth-

ods. If they are novel, it is an indication that crowdsourcing
brings some special leverage to the task, and we can analyze
the source of that power.

We assess novelty by comparing Binary Fission results
against the output of the DTinv system [13], which is a
fully automated classifer. Many invariant learners now ex-
ist, but DTinv is possibly the closest in spirit to our work.
Like Binary Fission, DTinv builds a decision tree from good
and bad program states (that preserve or violate end asser-
tions), plus a set of primitive predicates that relate program
variables. The key di↵erences are that DTinv builds its own
predicates from a basis set of planar cuts using the octagon
abstract domain (vs importing an arbitrary predicate set),
and it constructs decision trees of arbitrary depth that per-
fectly classify the data into Pure Good and Pure Bad sets (vs
the partial classifiers of bounded depth produced by Binary
Fission).

We apply DTinv to each of the TCAS problems given to
Binary Fission players, and we compare the resulting likely
invariants for legibility, generality in terms of data coverage,
and veracity as program preconditions. To make the com-
parisons fair, we pre-process the TCAS code to represent
arrays (which DTinv cannot currently consume) as separate
variables. In addition, rather than test the DTinv solution as
a whole for its status as a program precondition, we trans-
form it into Disjunctive Normal Form and test individual
disjuncts as candidate preconditions via the CBMC model
checker. This approach is symmetric with our examination
of disjuncts describing Pure Good nodes in the partial clas-
sifiers output by Binary Fission.

We compare the generality of the likely invariants and
preconditions found by measuring their coverage of program
states, as before.

5. BINARY FISSION RESULTS
Following the methodology described in the previous sec-

tion, we collected crowdsourced solutions for the seven TCAS
problems identified in Section 4.2. For purposes of illustra-
tion, we discuss the solution for the TCAS function Non
Crossing Biased Descend in detail, and then summarize across
the remaining six examples. We discuss the structure and
coverage of the likely invariants found, we identify the valid
program preconditions, and we evaluate the generality and
data covered by these results. We assess novelty through
comparison of the Binary Fission and DTinv solutions for
the same problem.

5.1 Likely Invariants for TCAS Problems
The consensus solution for Non Crossing Biased Descend

has 398 disjunctive clauses that represent the Pure Good
nodes found across Binary Fission players. Each clause is
a likely crowdsourced invariant. Figure 5 illustrates the
top three, measured by their coverage over program states.
Their content is syntactically similar; each clause is a con-
junct of 2-3 primitive predicates (shown as top-level ANDs),
where the primitives express numeric equalities and inequal-
ities over multiple TCAS variables. These are non-trivial
statements about domain variables, and they appear rea-
sonably general; they clearly do not pick out specific data
values. Following the methodology described in Section 4.5,
we measure the generality of these expressions by their cov-
erage of the training data; they each explain circa 30% of the
good program states. The three likely invariants also appear

129
Approved for Public Release; Distribution Unlimited

(not(Other_Capability > Two_of_Three_Reports_Valid))
and (not(Down_Separation != Positive_RA_Alt_Thresh[Alt_Layer_Value]))

(not(Down_Separation != Positive_RA_Alt_Thresh[Alt_Layer_Value]))
and ((Alt_Layer_Value <= size(Positive_RA_Alt_Thresh)-1))

(not(Alt_Layer_Value >= Up_Separation))
and (not(Down_Separation != Positive_RA_Alt_Thresh[Alt_Layer_Value]))
and ((Cur_Vertical_Sep != Positive_RA_Alt_Thresh[Alt_Layer_Value]))

Figure 5: The best three likely invariants measured by Good state coverage.

to be describing a similar truth, as they utilize many of the
same variables and terms. As a result, they can describe
many of the same states.

The solutions for all seven TCAS problems have a similar
structure. Table 2 shows that they contain between 262 and
704 clauses. These solutions are simple collections, and have
not been simplified; they can overlap both logically and in
terms of the data covered, and their number strictly grows
with the quantity of game play.

5.2 Crowdsourced Solution Progress
Figure 6 illustrates the crowd’s progress towards finding

a consensus likely invariant. It plots cumulative data ex-
plained by the crowdsourced solution, as accumulated in de-
creasing order of predicate quality (i.e., the number of good
program states recognized by the conjunctive predicate as-
sociated with each Pure Good node). This figure supports
several interesting observations. First, the top 20% of the
solutions explain 80% of the data, and this pattern repeats
across all TCAS problems. This suggests a statistical regu-
larity in crowd performance, and an uneven distribution of
expertise across players. Second, the consensus solution is
partial, meaning it fails to explain all the data even after in-
corporating every player’s contribution. This is an expected
result, as Binary Fission limits the depth of player classi-
fication trees – some truths are simply hard to express in
bounded space.

In order to investigate this point further, we employed a
greedy search algorithm to construct a classifier for the same
problem, over the same primitive predicates. The method
used average impurity for scoring splits. When invoked with
a depth limit of 5, the resulting partial classifier explained
21 good program states. This splitting metric clearly pro-
vided insu�cient motivation to distinguish Pure Good nodes
early in the classification process that have utility for invari-
ant generation. In contrast, the reward metric employed
by Binary Fission clearly influenced players to isolate Pure
Good nodes at shallower depths, with the associated benefit
for explaining good program states. This pattern repeated
across TCAS problems.

We also tested the expressive power of the primitive Bi-
nary Fission predicates by invoking the greedy classification
algorithm without a depth limit. The result here, and in all
7 TCAS problems, was that the predicates had the power to
correctly separate all good program and bad program states.
As a result, our statistics on Binary Fission solutions con-
cern the performance of the crowd, not the expressivity of
the predicates at their disposal.

5.3 Program Preconditions Found
We tested the likely invariants generated for Non Cross-

ing Biased Descend using the CBMC model checker as dis-

Figure 6: Crowd progress in classifying data points

from Non_Crossing_Biased_Descend

cussed in Section 4.4. Of the 398 clauses supplied by play-
ers, 16 qualified as program preconditions. That is, if any
of these preconditions hold on function entry, the postcon-
ditions described in Table 1 hold at program exit. Figure 7
lists the three most general preconditions found, ordered
by their coverage over the test set of good program states.
These are the first instances of program invariants found by
crowdsourced methods. As with the likely invariants, these
preconditions are non-trivial statements about domain vari-
ables, here relating the positions and capabilities of aircraft
in the sky. For example, the first/best precondition in Fig-
ure 7 states that advising a pilot to descend (the function of
Non Crossing Biased Descend) will satisfy safety assertions
when (a) the other plane’s altitude is higher, but (b) advis-
ing the pilot to climb will result in a vertical separation (up
separation) that is less than the required tolerance.

Binary Fission players collectively found program precon-
ditions for 6 of the 7 TCAS tasks. None were trivial. Table 2
identifies the quantity of preconditions found for each task,
and the numbers are substantial.

5.4 Invariant Generality
Following the methodology described in Section 4.5, we as-

sess the generality of the crowdsourced preconditions found
by measuring their coverage over good program states in
the test set. Table 3 counts the number of program states
explained by for the seven TCAS problems. The best-case
scenario is for the precondition to accept all good states. In
the case of Non Crossing Biased Descend, the aggregate pre-
condition (composed of the 16 clauses reported in Table 2)

130
Approved for Public Release; Distribution Unlimited

(not(Other_Tracked_Alt > Own_Tracked_Alt))
and (Up_Separation < Positive_RA_Alt_Thresh[Alt_Layer_Value])

(Other_Tracked_Alt > Positive_RA_Alt_Thresh[Other_Capability])
and (Down_Separation >= Up_Separation)
and (not(Up_Separation <= Positive_RA_Alt_Thresh[Alt_Layer_Value]))
and (Other_Tracked_Alt > Own_Tracked_Alt)

(not(Other_Capability == 2))
and (not((Down_Separation == 800) or (Down_Separation == 600)

or (Down_Separation == 500)))
and (Down_Separation != Positive_RA_Alt_Thresh[Alt_Layer_Value])
and (not(Other_Tracked_Alt > Own_Tracked_Alt))
and (Up_Separation < Positive_RA_Alt_Thresh[Alt_Layer_Value])

Figure 7: The three best crowdsourced preconditions found.

Precon- Clauses
Function ditions from BF
ALIM 45 422
alt sep test 103 462
Inhibit Biased Climb 7 262
Non Crossing Biased Climb 14 360
Non Crossing Biased Descend 16 398
Own Above Threat 0 500
Own Below Threat 6 704

Table 2: Quantity of Crowdsourced Preconditions

and Likely Invariants: A fraction of the likely in-

variants qualify as program preconditions.

Good Total
Function states states %
ALIM 51 95 53.7%
alt sep test 424 2000 21.2%
Inhibit Biased Climb 59 295 20.0%
Non Crossing Biased Climb 60 295 20.3%
Non Crossing Biased Descend 108 295 36.6%
Own Above Threat 0 161 0%
Own Below Threat 0 185 0%

Table 3: Testing preconditions’ generality by com-

paring the number of good states accepted versus

the total number of good states in the held-out test

set.

explains 36.6% of the good program states withheld during
the classification task. This corresponds to 2.3% of the good
states per precondition clause on average, although the dis-
tribution was uneven. Figure 7 shows the best three precon-
ditions for this problem. The first explained 53% of the data,
while the second and third best preconditions captured 37%
and 26% of the program states in the test set respectively.
The net result is that the crowd discovers multiple program
preconditions with noteworthy coverage/generality.

5.5 Novelty Relative to the DTinv Solution
As discussed in Section 4.6, we compare the Binary Fis-

sion and DTinv solutions for each TCAS problem in order
to examine the conjecture that the crowd provides novel in-
sight in the search for program invariants. We compare the
legibility and coverage of the likely invariants they produce,
as well as their ability to discover program preconditions.

In its raw form, the DTinv solution for Non Crossing Bi-

ased Descend is a depth 15 decision tree containing 65 prim-
itive predicates that completely segments the good and bad
program states. The corresponding logical expression is not
human readable (nor was it intended to be). We converted
this form to DNF to extract less monolithic likely invariants,
and show the top three clauses (as measured by the number
of Good states covered) in Figure 8.

It is immediately obvious that these expressions rely heav-
ily on numeric thresholds. As mentioned earlier, this is by
design, as DTinv’s primitive predicates represent planar cuts
in the octagon domain. Although it is an aesthetic judg-
ment, this design appears to make the DTinv statements
harder to interpret than the Binary Fission output in Fig-
ure 5.

Of the three DTinv expressions in Figure 8, the second
overlaps the first, and the third is a specialization of the
second. They cover 29%, 16%, and 11% of the Good pro-
gram states, respectively. It is worth noticing that the single
best likely invariant found by crowdsourcing (Figure 5) and
the DTinv classifier have essentially identical capture, and
that the top three employ the same variable set, though in
notably di↵erent formulas. This is an indication that both
systems are after similar insights.

We tested the DTinv solution for Non Crossing Biased
Descend using the CBMC model checker to determine if
it contained valid program preconditions. The surprising
conclusion is that it did not, either as a whole, or when
we tested individual DNF clauses. This pattern repeated
across all seven TCAS problems; none of the DTinv solutions
contained valid preconditions. In contrast, the crowd, acting
through Binary Fission, produced preconditions for 6 of the
7 TCAS problems. As a result, the crowdsourced solutions
are clearly novel relative to the DTinv output.

The cause for the lack of DTinv-based preconditions ap-
pears to be overfitting; numeric thresholds induced from
data are highly likely to break in the presence of a hold-
back set, and the lengthy expressions DTinv discovers to
explain all the training data have limited opportunity to
generalize. In contrast, the more abstract predicate base
and 5 conjunct limit imposed by Binary Fission essentially
forces players to paint with a broader brush. Players can
only produce shorter, more powerful statements, some of
which generalize, as shown above.

6. DISCUSSION
This paper has addressed the problem of crowdsourcing

program preconditions, under the model that crowdsourc-

131
Approved for Public Release; Distribution Unlimited

(not(2* Positive_RA_Alt_Thresh [0] + 2* Down_Separation <= 1472))
and (2* Up_Separation -2* Alt_Layer_Value <= 801)
and (2* Alt_Layer_Value -2* Down_Separation <= -799)
and (2* Alt_Layer_Value + 2* Two_of_Three_Reports_Valid <= 9)

(not(2* Positive_RA_Alt_Thresh [0] + 2* Down_Separation <= 1472))
and (not(2* Up_Separation -2* Alt_Layer_Value <= 801))
and (not(2* Up_Separation -2* Down_Separation <= -1))
and (not(2* Own_Tracked_Alt -2* Other_Tracked_Alt <= -1203))
and (not(2* Own_Tracked_Alt_Rate + 2* Up_Separation <= 1594))
and (2* Alt_Layer_Value + 2* Other_Capability <= 5)

(not(2* Positive_RA_Alt_Thresh [0] + 2* Down_Separation <= 1472))
and (not(2* Up_Separation -2* Alt_Layer_Value <= 801))
and (not(2* Up_Separation -2* Down_Separation <= -1))
and (not(2* Own_Tracked_Alt -2* Other_Tracked_Alt <= -1203))
and (not(2* Own_Tracked_Alt_Rate + 2* Up_Separation <= 1594))
and (not(2* Alt_Layer_Value + 2* Other_Capability <= 5))
and (2* Other_Tracked_Alt -2* Down_Separation <= 95)
and (not(2* Two_of_Three_Reports_Valid + -2* Positive_RA_Alt_Thresh [3] <= -1481))
and (not(2* Cur_Vertical_Sep + 2* Other_Tracked_Alt <= 1906))

Figure 8: The top three DTinv likely invariants.

ing o↵ers an alternate, and viable method for addressing a
di�cult task. We have provided an existence proof in the
form of the Binary Fission game, and we have shown that
crowdsourcing is e↵ective by employing the game to discover
program preconditions for 6 TCAS problems. The precon-
ditions are non-trivial, reasonably general (as measured by
data coverage on a test set), and human readable. They
are also novel, at least with respect to the output of DTinv,
which finds likely invariants that do not qualify as program
preconditions.

There are three sources of power behind Binary Fission: it
employs an expressive representation, it relies on the crowd
to conduct a thorough search, and the game imposes re-
strictions on that search that select for general solutions. In
more detail, the representational power comes from Daikon,
as Binary Fission inputs the highly structured predicates it
produces. The game exploits crowd search by collecting and
testing the large number of piecewise solutions that players
contribute. The game influences the shape of the solution by
limiting classifier depth, and by rewarding discovery of par-
tial classifiers that isolate positive data, which has special
utility for invariant construction.

While Binary Fission employs a classification model, im-
proving classification technology is not our goal. Our main
point is to introduce crowdsourcing as a promising approach
to invariant discovery. From this perspective, the key con-
jecture behind crowdsourcing is that many non-expert in-
dividuals have the desire and ability to provide insight into
highly technical problems when they are presented in a suit-
able form. This conjecture holds for Binary Fission. If it
generalizes, related games will provide leverage on additional
verification tasks, and crowdsourcing will o↵er an avenue for
expanding the reach of verification technology.

7. THREATS TO VALIDITY
This paper reports first results from a crowdsourced ap-

proach to precondition discovery. As mentioned above, the
key points are that crowdsourcing is feasible, e↵ective, and
promising as a practical avenue for expanding the reach of
verification methods. That said, there are several threats
to the validity of these claims, as well as our more detailed

results.
First, while crowdsourcing finds preconditions on TCAS,

the approach may not generalize to more complex programs.
In particular, TCAS is a short, straight line, arithmetic pro-
gram that lacks pointers, loops, complex data structures,
and a range of other language features that complicate the
verification task. The counterpoint is that Binary Fission
is agnostic to the structure of the underlying program, be-
cause it formulates precondition discovery as classification.
The limits on its use come from the need for inputs common
to classifiers; a base of relevant primitive predicates, and la-
beled data distinguishing bad program states from good. It
is true that these inputs are hard to provide for more com-
plex programs (especially the predicate base and assertion
violating program states) as they are the product of deep
analyses of program structure. However, Binary Fission is
also agnostic as to the source of these data, which greatly
increases its avenues for application.

Second, our results on the novelty of the Binary Fission
solution could be the product of our choice of DTinv as the
comparator. This is quite plausible; the likely invariants
produced by other machine learning methods might qual-
ify as preconditions. However, our experience with Binary
Fission has illuminated constraints that should be applied
to the use of classifiers for this task; they should penalize
solution size (which is common wisdom), employ a powerful
predicate base to support human legibility of the end result,
and reward identification of pure good nodes rather than
focus on an entropic measure as the splitting criterion.

A third, and broader concern, is that classification is vi-
able but our use of crowdsourcing is superfluous, meaning
that Binary Fission can be replaced by a suitable automated
method. This argument is relevant at this stage in the devel-
opment of Binary Fission, but it devolves to the underlying
question, “What does the crowd bring to classification that
is di�cult to automate?”. In the case of FoldIt [4] players
brought spatial intuition to the task of folding complex pro-
teins, and obtained results never achieved through search
over molecular conformations in combination with energy
minimization methods. Classification tasks also have a nat-
ural framing as search, and by analogy, the crowd may intuit

132
Approved for Public Release; Distribution Unlimited

which predicates to employ en route to a more general solu-
tion. Binary Fission currently hides a bit too much informa-
tion to support this type of intuition (in service of broaden-
ing the game’s appeal), but advanced versions will provide
more context about the underlying task. We currently rely
on the crowd to explore unexpected places relative to the
greedy search conducted by automated methods, and this
approach has successfully produced program preconditions.

A final, and related argument is that Binary Fission ad-
dresses the wrong crowdsourcing problem. Rather than ask
the crowd to combine primitive predicates, we should un-
leash them on the task of inventing the predicates them-
selves. This step seems natural as predicate invention (in-
cluding predicate abstraction from data) is a critical, but
elusive process currently performed by people. We have, in
fact, developed a game for this task, called Xylem [15], and
it is available on-line at xylem.verigames.com.

8. CONCLUSION
We have employed Binary Fission, a crowdsourced game

for invariant discovery, to analyze the implementation of an
on-board aircraft collision detection and avoidance system.
We have shown that the crowd can employ Binary Fission
to prove program properties. They find function precondi-
tions (statements about program variables associated with
function inputs) that guarantee important safety properties
hold on program exit, where those properties are encoded
as postconditions. Binary Fission players discover concise,
general, and human readable preconditions, which are also
novel relative to the complicated logical expressions often
produced by other classifications systems. The players have
no special expertise in formal methods or programming, and
are not specifically aware they are solving verification tasks.

Binary Fission demonstrates the feasibility of crowdsourced
invariant discover, and it illustrates the promise of crowd-
sourcing for other verification tasks. This suggests a path-
way for expanding the reach, and practical application of
verification technology.

9. ACKNOWLEDGMENTS
We gratefully acknowledge the contributions of our col-

laborators at UCSC, SRI and CEA, especially Kate Comp-
ton, Heather Logas, Zhongpeng Lin, Dylan Lederle-Ensign,
Joe Mazeika, Afshin Mobrabraein, Chandranil Chakrabor-
tii, Johnathan Pagnutti, Kelsey Co↵man, John Murray, Min
Yin, Natarajan Shankar, Ashish Tiwari, Sam Owre, Florent
Kirchner, Julien Signoles, and Matthieu Lemerre.

This material is based on research sponsored by DARPA
under agreement number FA8750-12-C-0225. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as
necessarily representing the o�cial policies or endorsements,
either expressed or implied, of DARPA or the U.S. Govern-
ment.

10. REFERENCES
[1] J. Chamberlain, U. Kruschwitz, M. Poesio, and

P. Michelucci. Methods for engaging and evaluating
users of human computation systems. In Handbook of

Human Computation. Springer Science+Business
Media, New York, 2013.

[2] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement for
symbolic model checking. J. ACM, 50(5):752–794,
Sept. 2003.

[3] A. Coen-Porisini, G. Denaro, C. Ghezzi, and M. Pezzé.
Using symbolic execution for verifying safety-critical
systems. In ESEC/FSE 2001, pages 142–151, 2001.

[4] S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee,
M. Beenen, A. Leaver-Fay, D. Baker, Z. Popović, et al.
Predicting protein structures with a multiplayer online
game. Nature, 466(7307):756–760, 2010.

[5] D. Dean et al. Lessons learned in game development
for crowdsourced software formal verification. In 2015
USENIX Summit on Gaming, Games, and
Gamification in Security Education (3GSE‘15).

[6] S. Deterding, M. Sicart, L. Nacke, K. O‘Hara, and
D. Dixon. Gamification. Using game-design elements
in non-gaming contexts. In CHI ‘11 Extended Abs. on
Human Factors in Computing Systems (CHI EA ‘11).,
2011.

[7] I. Dillig, T. Dillig, B. Li, and K. McMillan. Inductive
invariant generation via abductive inference. In 2013
ACM SIGPLAN Int’l Conf. on Object Oriented
Programming Systems Languages & Applications,
OOPSLA ’13, pages 443–456, 2013.

[8] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program
invariants to support program evolution. IEEE Trans.
Software Engineering, 27(2):99–123, 2001.

[9] M. D. Ernst, W. G. Griswold, Y. Kataoka, and
D. Notkin. Dynamically discovering pointer-based
program invariants. Technical Report
UW-CSE-99-11-02, Computer Science, Univ. of
Washington, Nov. 1999.

[10] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
system for dynamic detection of likely invariants.
Science of Computer Programming, 69(1):35–45, 2007.

[11] P. Garg, C. Löding, P. Madhusudan, and D. Neider.
Ice: A robust framework for learning invariants. In
Computer Aided Verification, 2014.

[12] A. Kawrykow, G. Roumanis, A. Kam, D. Kwak,
C. Leung, C. Wu, E. Zarour, L. Sarmenta,
M. Blanchette, J. Waldispühl, et al. Phylo: A citizen
science approach for improving multiple sequence
alignment. PloS one, 7(3):e31362, 2012.

[13] S. Krishna, C. Puhrsch, and T. Wies. Learning
invariants using decision trees. arXiv preprint
arXiv:1501.04725, 2015.

[14] D. Kroening and M. Tautschnig. CBMC–C bounded
model checker. In Tools and Algorithms for the
Construction and Analysis of Systems, pages 389–391.
Springer, 2014.

[15] H. Logas, J. Whitehead, M. Mateas, R. Vallejos,
L. Scott, D. Shapiro, J. Murray, K. Compton,
J. Osborn, O. Salvatore, et al. Software verification
games: Designing Xylem, The Code of Plants. In
Foundations of Digital Games (FDG 2014), 2014.

[16] K. Mao, L. Capra, M. Harman, and Y. Jia. A survey
of the use of crowdsourcing in software engineering.

133
Approved for Public Release; Distribution Unlimited

RN, 15:01, 2015.
[17] K. L. McMillan. Applications of Craig interpolants in

model checking. In Proceedings of the 11th
International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS’05,
pages 1–12, Berlin, Heidelberg, 2005. Springer-Verlag.

[18] G. Rothermel, S. Elbaum, A. Kinneer, and H. Do.
Software-artifact infrastructure repository, 2006.

[19] N. Savage. Gaining wisdom from crowds.
Communications of the ACM, 55(3):13–15, 2012.

[20] R. Sharma and A. Aiken. From invariant checking to
invariant inference using randomized search. In
Computer Aided Verification, pages 88–105, 2014.

[21] R. Sharma, A. V. Nori, and A. Aiken. Interpolants as
classifiers. In Computer Aided Verification, 2012.

[22] R. M. Stallman et al. Using the GNU compiler
collection. 2003.

[23] K. Tuite, N. Snavely, D.-y. Hsiao, N. Tabing, and
Z. Popovic. Photocity: training experts at large-scale
image acquisition through a competitive game. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 1383–1392.
ACM, 2011.

[24] L. vonAhn and L. Dabbish. Designing games with a
purpose. Commun. ACM, 51(8):58–67, Aug. 2008.

[25] L. Zhang, G. Yang, N. Rungta, S. Person, and
S. Khurshid. Feedback-driven dynamic invariant
discovery. In Proceedings of the 2014 Int’l Symp. on
Software Testing and Analysis, pages 362–372, 2014.

134
Approved for Public Release; Distribution Unlimited

AFRL Air Force Research Laboratory
API Application Program Interface
Astree Static Program Analyzer for C Programming
BIND Berkeley Internet Name Domain
C1 CHEKOFV Phase 1
C2 CHECOHV Phase 2
CFS CHEKOFV Facilitate Server
CRS CHEKOHV Ranking System
CS Citizen Scientist
CS Computer Science
CSFV Crowd Sourced Formal Verification
CWE Common Weakness Enumeration
DA Dynamic Analysis
Daikon Machine Learning Tool
DARPA Defense Advanced Research Projects Office
DB Database
DIInv Machine Learning Tool
FB FaceBook
FRAMA-C Framework for Modular Analysis of C Programs
GS Game Subsystem
HAS Heavyweight Static Analysis
IFF Identify Friend or Foe
LSA Lightweight Static Analysis
MC Software Model Checking
MCMC Markov Chain Monte Carlo
mloc Million Lines of Code
PA Predicate Abstraction
SQL Structured Querry Language
SV-COMP A Competition for Software Verification
T C TopCoder (Now Appirio)
TP Theorem Prover
VF Verification Framework

Approved for Public Release; Distribution Unlimited

