
3.4.2 (Not Quite) Casual Math. CyphrSeekr, the original CHEKOFV concept game, was 
designed to allow players to describe the patterns they discovered as mathematical equations. In 
Xylem, we continued with this core mechanic as we felt this approach – despite alienating the 
less math-inclined of our potential audience – was productive for several reasons.  
Perhaps most importantly, direct equation building allowed for a wide range of invariants to be 
created and submitted. Each loop may have more than one possible invariant, and each invariant 
collected would be useful to the backend processes that annotate the originating software. 
Allowing players to construct their own equations opened up the flexibility to receive multiple 
solutions for each puzzle while simultaneously taking advantage of the strengths of different 
player skill levels and play styles. This created a customized challenge for each player depending 
on their sophistication towards the game while taking best advantage of the strengths of crowd 
sourcing.  

In addition to direct gameplay ramifications, focusing the main game activity on building 
equations had some practical aspects as well for possible future iterations. The framework is 
easily expandable in the future to include more tools if needed/desired. Several tools appeared in 
earlier versions of the game that were later removed to avoid confusing players. However, 
allowing more sophisticated players to unlock specialized tools (such as the mathematical logical 
construct, “implies”) remains a possibility for future expansion. The direct equation-building 
approach also supports, in many situations, implementation of different data structures as game 
levels without having to completely redesign parts of the game. Figure 21 illustrates some of the 
evolving elements of styles and tools in early versions of Xylem.  
A core tension of the game design was the desire to simultaneously have a large range of players 
while also having a large expressive range for their observations about loops. At times it seemed 
almost a one-for-one trade off between appealing to our desired audience and allowing for 
greater expressibility of the tool set. Early versions of the game, for example, included tools such 
as the mathematical symbol for the logical concept of “implies”. While this would have allowed 
for a greater range of possible invariants that could be constructed, taking the time to explain the 
concept of “implies” to someone unfamiliar with it seemed like it would bog down the game 
flow and create a mental stumbling block. We ultimately decided that losing this bit of 
expressivity was less important than supporting a wider player base. Even so, Xylem remained 
sufficiently mathy, as it triggered concerns of math anxiety among some of our play testers. 
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Figure 21. Evolution of introduction and play screens in Xylem 
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3.4.3 Rewarding the Player in Xylem. An important part of games is receiving feedback. 
Upon achieving a goal, players receive a burst of self-satisfaction. When goals are not achieved, 
players still see how close they came and can track their improvement in skills. Either way, this 
sense of achievement (or potential achievement) is an important part of what makes games 
enjoyable and compelling.  

Xylem posed an unusual problem when it came to offering players feedback. Essentially, the 
game has no immediate way to gauge the utility or strength of a player-provided invariant. There 
are no established techniques for ranking the difficulty of an invariant-finding problem, assessing 
the quality of a solution, measuring incremental progress, or knowing when a problem is done.  

In this situation, our task of designing game mechanics merged with the basic CS research into 
invariant discovery/analysis. The only way to know for certain the usefulness of a given 
invariant is to test it out on the original loop, in the context of a larger verification problem being 
explored via the use of out-of-game software verification tools. This suggested that the only way 
to provide feedback to players would be to have them submit their answers, wait some undefined 
amount of time for a remote expert to test out their solution, and then provide scoring based on 
this feedback. Thus, our early narrative design involved the players’ solutions being transmitted 
to “The University” and players would continue playing other puzzles. The results would then be 
received by telegraph some time later; see Figure 22.  

Figure 22. Presentation of results scores in Xylem 

Although this delayed-results technique was somewhat satisfactory from a narrative point of 
view, traditional games don’t tend to work that way. We felt that this approach alone would not 
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be satisfying for players but, in the early design stage of the project, we did not have any useful 
heuristics to help us determine what a “good” invariant was.  
Ultimately, we decided to use some simple parameters to provide immediate feedback, to reward 
the player. For example, we knew that using as many of the variables in the loop as possible is 
better than using fewer. We knew that utilizing the data from the time-zero iteration of the loop – 
initialization values, constants, etc. – generally resulted in better invariants (these became 
represented as the blue “bonus” tiles in the game). Furthermore, stating that one entity in the 
invariant is equivalent to another entity is typically stronger than stating a less-than or greater-
than relationship. We also knew that we want to encourage players to come up with a variety of 
invariants. With a lack of solid answers for how to give players feedback, we built our scoring 
system on these four considerations. Figure 23 illustrates the player interaction screen. 

Figure 23. Example of pattern solution for game instance in Web version of Xylem 

3.4.4 Problem Difficulty and Shaping the Player Experience. One design challenge in 
Xylem was how to craft the difficulty curve for each player. We examined several approaches to 
estimate puzzle difficulty. One was to link the structure of a loop (visible to the front end) to 
difficulty. More “guards” (conditionals in the loop) suggest more paths and potential for a more 
logically complex invariant (if A then I1, if B then I2). However, it is unclear if this is true in 
practice.  
A second approach was to employ social ranking that is analogous to web-page ranking in some 
search engines, as was noted in the CRS description in Section 3.3. If skilled players found a 
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problem hard, it must be hard. If novice players solved a problem, it must be easy. This would be 
useful for serving up solved problems to new players in a sensible order, but the issue of ranking 
new problems remains open. Additionally, there is no firm basis for applying similarity metrics 
(associating loop features with loop difficulty) to leverage social analyses. A third option was to 
employ machine learning to classify problem difficulty from player ratings, but again, this is 
stymied by a lack of understanding of the underlying feature base. All of these approaches 
represent research into invariant-finding tasks; from the perspective of game design, it was easier, 
and sufficient to employ heuristic measures. 
The heuristic measure of difficulty was based on the experience of team members playing pre-
release versions of the game. We assume that integer-based problems are less difficult than 
array-based problems. We assume that working with more variables is harder than working with 
fewer variables. We assume that working with larger numbers is more difficult than working 
with smaller numbers. Based on these assumptions, difficulty profiles are assigned to each 
problem and problems are grouped by difficulty into different regions on the island. 
Unfortunately, offering players a smooth difficulty curve with this approach isn’t possible. Other 
factors – which are hard to test for, especially on a large scale – can influence how difficult a 
given problem is. Therefore, a player could breeze through the first three problems in the “easy” 
region, then encounter a very hard problem followed by another easy one. This does not make 
for the type of hand-crafted difficulty curve that highly successful games can take advantage of, 
and occasionally causes player confusion and frustration. 
3.4.5 Teaching the Game. The tutorial development for Xylem began after the initial theming 
and general concept of the game was pinned down. The task of getting new players on board 
proved to be a massive challenge: presenting a problem this involved as an approachable, fun 
experience that is easy to learn required much research, design, and iteration. The first versions 
of the tutorial existed as paper prototypes, with which the designers were able to test different 
ideas quickly and efficiently with many testers. Only through extensive testing and iteration were 
we able to settle on a tutorial that effectively leads the player into the game while teaching them 
the basic skills they need to know in order to succeed. The tutorial design and polish took place 
in parallel with the core game design, requiring as much design time and effort as the rest of the 
game combined. Early feedback from external game players indicate that the tutorial does 
successfully train players to play the game, but is too long, a direct consequence of the many 
game elements that need to be taught to the player. An early tutorial design document for the 
game that became Xylem may be found in Appendix 4. 

3.4.6 Aesthetic Experience. Xylem’s aesthetics were developed with the dual goals of creating 
a pleasant place for the player to spend their time and creating consistency with the 1920’s theme. 
Because Xylem was meant to be a slow, contemplative game (but with a hint of adventure), it 
was important that the visuals and music fostered this atmosphere. A great deal of research into 
map styles in the appropriate time period was done by our artist before the specific watercolor 
look and map orientation was decided upon. (See Figure 24)  

Likewise, our sound designer researched silent adventure movies and period jazz and classical 
music to develop the ambient music pieces that play on the map screen and puzzle screens. 
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Figure 24. Miraflora – the island setting for Xylem player's explorations 

The photorealistic look of the game interface stemmed from initial design-space ideation 
photography for the introductory desktop on the opening screen. This approach was further 
developed and used for other in-game assets. At that point, we knew that we wanted a similar 
look for the actual in-game UI. This direction added to the first person immersion of the game 
and, when combined with the corresponding period sound effects, helped to create a strong 
tactile feeling to the game that encourages players to manipulate the playing pieces.  
3.4.7 Mobile Platform. The decision to adopt the iPad as Xylem’s target platform was based 
on considerations of the chosen audience and how the game would most likely be played. In 
particular, the iPad as a platform appeals to a wide variety of people – the majority of tablet 
owners are between the ages of 35 and 44, and are spread equally amongst the genders, whereas 
the smartphone user demographics skew a bit younger.  
Given the contemplative nature of the gameplay, we imagined players playing the game while 
sitting somewhere comfortable for at least thirty minutes. More than either a smartphone or PC, 
the iPad has a form factor that encourages this sort of behavior. Additionally, given the number 
of icons that we are asking players to work with, the extra screen real estate provided by the iPad 
over the smartphone seemed ideal.  
3.4.8 Considerations for Cooperative Play. A key vision for CHEKOFV was for players to 
enjoy our game together; however, sorting out exactly how to achieve this was a long and 
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involved iterative process. The situation was further complicated by the privacy concerns 
associated with exposing individual player's personal information. Given the intended audience 
and the emotional feel we wanted for the game, we opted for a collaborative scenario, albeit a 
very light one. We wanted to create player investment by encouraging the feeling that all players 
were working together towards some greater goal. It was important that players knew other 
people were playing the same game at the same time. This was intended to support a sensation of 
being “alone together”, which was seen to be more enticing to our target audience than the more 
lonely feeling of interacting with a single player game.  
It was also thought that the audience would be drawn in further to the fiction of the game, which 
would help create an impetus for players to interact on the forums (in addition to helping each 
other with hard problems). A complex backstory to the island was created, which was to be 
revealed in a semi-random manner one clue at a time. Players were to collect clues, compare 
them on forums, and discuss theories. The intended effect was a meta-layer of collaboration that 
would occur outside the game itself to reward and draw in the core player base. 
Design deliberations also considered sharing player-created resources. Though initial resource 
constraints prevented its inclusion in the game, a feature for having players create and share 
“helper functions” was designed. Such helper functions would make it easier to see relationships 
among variables, or help subdivide larger problems into smaller pieces. Such capability would 
require a new layer of user tools for composing, naming, exporting, and importing these tools. 

Information about the outcomes from Xylem gameplay may be found in Section 4 – Results. 
3.5 Phase Two: Citizen Science Games 
3.5.1 Transition and Reimagination. As we approached the design of another CHEKOFV game 
for Phase Two of the CSFV program, it became clear that we needed to rethink our assumptions 
about the audience to which we were appealing. In game design (as in many things) the target 
audience is the number one consideration that informs all design decisions, from game 
mechanics to color scheme. With Xylem, our vision was to design a casual-type puzzle game. 
Given the not-quite-casual math aspects of the game, we knew we were already limiting our 
appeal but we attempted to make up for it with narrative, story, a tactile touchscreen UI and 
aesthetics. However, we were obfuscating the science goals of the project, which was originally 
thought was a positive thing. When combined with the sudden jumps in math-difficulty, this 
alienating players who were otherwise drawn to it.  
On the other hand, Xylem did attract a core group of very passionate players. We interviewed 
several of these players about their experiences playing the game. From this work, it became 
clear that our core audience was not the audience we had originally set out to capture. The most 
avid players were software engineers who were intrigued by the software-verification science 
goals of the project. They also felt that some of the work we were most proud of -- our narrative 
and world-building components -- were distractions that got in their way. In particular, they were 
keen to solve puzzles and feel like they were contributing to software security.  
This player orientation was also confirmed by the marketing analysis of overall CSFV audience 
activity on the Verigames website, which further revealed that the visitors were primarily 
interested in the science behind the games, rather than the games themselves. In other words, the 
publicity articles about the CSFV project were generally drawing a science oriented audience 
who were interested in crowd-sourcing science projects, rather than the puzzle gamers originally 
hoping for. Because the most prolific players of Xylem were computer scientists, and because our 
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audience was turning out to be mostly people who were intrigued in the science aspect of the 
project, we decided to take a very different tactic with our second game. In fact, we rethought the 
notion of making a “game” at all. 

3.5.2 Citizen Science and Safe Passage. A citizen scientist may be thought of as "a member of 
the general public who engages in scientific work, often in collaboration with or under the 
direction of professional scientists and scientific institutions." In other words, an amateur 
scientist. (See  www.en.wikipedia.org/wiki/Citizen_science). 

Given our experience of the player interests and behavior with Xylem, we adopted a strategy of 
appealing to and cultivating this audience for our Phase Two offering. Specifically, we set our 
goals for experience as targeting a citizen scientist audience with a fun game that allowed 
multiple players to collaborate on a single problem. From the CSFV point of view, the goal was 
to create a game to compose and assemble conjunctive and disjunctive invariants, because this 
process is difficult for automated systems to produce. 

While these goals are fairly abstract, we were able to refine them by reasoning backwards from 
the needs of the target audience and forwards from our experience with Xylem. In particular, 
given that the target audience was motivated by the science goal, we chose to expose more of the 
invariant-creation task to players than we had done in Xylem. To make the experience fun for this 
audience, we realized that the accomplishments needed to be incremental and easy to perform. 
That meant decomposing invariant creation into smaller steps than in Xylem, where each puzzle 
required significant concentration and time. Nevertheless, our work on Xylem suggested a way 
forward - if we could phrase invariant creation as data-driven task, we could define incremental 
accomplishments in terms of the data examined or explained.  
This line of reasoning produced a key insight; we could model invariant composition as the task 
of separating good program states from bad. Here, a program state is a snapshot of variable 
values describing some moment during program execution. For example, if the task is finding 
loop invariants (as in Xylem), any state produced by the loop at a given iteration is good, while a 
bad state is a vector of variable values that could never be produced by the loop at that time. If 
the task is finding program preconditions, good states are inputs that satisfy program post-
conditions on execution, while bad states violate those post-conditions. This perspective opened 
up a variety of game-design concepts; we could cast good/bad states as friends/enemies or 
desirable/undesirable objects, etc., and design game mechanics around the task of selecting one 
class, while defeating/rejecting the other. 
The initial concept design for the Phase Two CHEKOFV game was called Safe Passage, and 
employed the metaphor of distinguishing friends from enemies. Figure 25 provides early 
sketches. The player is charged with preventing an influx of invasive species while encouraging 
the preservation of native species. Triangles are traps that catch some creatures and not others. 
Game play proceeds in two steps. In the first stage, the player places traps in sequence along 
corridors, and introduces branch points into the maze. Then, when the player presses the “Run” 
button, the fish and shells traverse the maze. They choose a direction at branch points, and pass 
through, or are caught by traps en route.  
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Figure 25. Early exploration of Safe Passage game concepts 
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With respect to the underlying science task, each fish is an instance of a native species and 
represents a good program state. Each shell represents an invasive species and a bad program 
state. Each trap corresponds to a boolean predicate that acts on program states, and passes any 
state/creature that evaluates to true. The set of possible traps are defined in advance. Sequential 
traps create conjunctive predicates, while branch points in the maze create disjunctive predicates. 
After the species run the maze, the game software reads out the expressions that characterize the 
individuals caught in each trap, or that exit the maze. In a partial solution, some fish and some 
shells are caught in certain traps, and some of each exit the maze. In the ideal situation, all fish 
(all good states) make it through the maze, while all shells (all bad states) are trapped en route. 
The very best mazes have fewer traps, suggesting simpler, more general solutions. 
Safe Passage included a social mode of game play, where multiple users could collaborate on the 
same maze or share sequences of traps. We anticipated running synchronous and asynchronous 
team-based tournaments. We also envisioned an interplay between Safe Passage and a software 
package (like Daikon) that produces the vocabulary of predicates/traps; it let the player request 
new traps that would better separate the fish and shells already caught.  

Our Phase Two design work substantially advanced our understanding of the constraints for 
building software verification games. Table 6 summarizes the comparisons and lessons learned 
during Phase One, and their implications for Phase Two. The most notable advances are in the 
increased clarity on the intended audience, and in the style of the game that should appeal to 
them.  
It was also noted that our original game would benefit from affordances for a “wizard” or expert 
human player, and also a software-based robot to remove puzzles that are evidently intractable 
and hand them over to the experts for further study. The addition of such affordances was taken 
into consideration for follow-on games, where they could also be used to introduce new puzzles 
that were targeted to particularly successful players. 

Safe Passage itself was never built out to the level of playable game, as we discovered new 
issues and more elegant solutions during the design process. These new insights provided a 
deeper appreciation of the citizen scientist audience, and a cleaner conceptualization of the data 
segmentation task. 

3.5.3 From Maze To Trees. As part of designing Safe Passage, we examined other games that 
cultivate a citizen scientist audience and draw upon the "wisdom of the crowd'' by transforming 
hard scientific problems into entertaining experiences [23] [24] [[25]. 
For example, FoldIt (https://fold.it/portal/), EyeWire (https://wiki.eyewire.org/en/Main_Page), 
and Zooniverse (https://www.zooniverse.org/projects/) each provide clear tasks that let players 
make small, but meaningful contributions. FoldIt calls on players to fold individual proteins, 
while EyeWire asks players to identify neuron types, and trace interconnections from imagery. 
The collection of projects in Zooniverse are at the boundary between Mechanical Turk tasks and 
scientific discovery; players identify animals in photographs, classify galaxies, characterize bat 
calls, annotate war diaries, and find kelp forests in satellite imagery, among other tasks.  
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Table 6. Insights from original deployment of Xylem and their application in updating 
Xylem and designing the new Phase Two game 

Original%Version%of%Xylem% Xylem%Update%Plans% New%Phase%Two%Game%

The!audience!must!be!a!good!match!
for!the!level!of!difficulty!of!the!puzzles!
(and!vice!versa).!

Make!changes!to!attract/retain!
more!math!and!puzzle!players!

Hypothesis!that!audience!can!be!
increased!or!diversified!by!taking!out!
the!"mathyness"!of!the!representation!
and!replacing!it!with!other!visual!
representations.!

Xylem!is!not!a!“casual!game”!due!to!
the!complexity!of!the!puzzles.!

Make!changes!to!attract/retain!
more!math!and!puzzle!players!

Still!not!a!casual!game,!but!takes!the!
burden!off!of!players!to!come!up!with!
complete!solutions!de!novo!and!instead!
asks!players!to!tweak!proposed!
solutions.!

The!rate!at!which!the!complexity!of!
puzzles!increases!is!problematic!for!
players.!

Players!rate!the!difficulty!of!
puzzles,!which!will!in!turn!be!
evaluated!by!the!team.!Pass!
very!difficult!or!intractable!
puzzles!to!human!experts!

Intractable!puzzles!can!be!detected.!
Players!can!also!rate!difficulty!of!
puzzles.!

Initial!humanccentered!design!
research!during!the!early!phases!of!
design!was!used!to!help!to!tune!
original!targeted!audience!to!activity!
and!context.!

Midterm!design!research!
helped!remove!focus!from!
"casual"!players!and!switch!
focus!to!math!and!puzzle!
players.!

Since!we!are!at!the!beginning!of!this!
new!game!process,!we!can!do!some!
humanccentered!design!research!and!
also!create!and!test!mockups!and!
prototypes.!

A!Web!version!of!the!game!is!
preferable!for!serious!puzzle!players.!

New!version!of!Xylem!to!be!
ported!to!the!web.!

Webconly!game.!

The!narrative!must!be!compelling!and!
motivational!with!a!plausible!
connection!to!the!player’s!activity.!!

Remove!original!narrative!since!
engaged!audience!found!it!
irrelevant!and!annoying.!!

The!game!is!forthrightly!in!the!"puzzle!
game"!genre.!It!is!not!a!narrative!game.!

Peer!review!of!solutions!can!function!
as!a!motivator!for!play!as!well!as!an!
encouragement!for!social!interaction!
among!players.!

Peer!review!system!to!be!
introduced!in!Xylem!

Individual!puzzle!scores!can!introduce!
competition.!Filters!created!for!
particular!puzzles!may!be!traded!among!
players.!

For!social!interaction,!the!game!would!
benefit!from!inducements!and!
affordances!for!collaboration!as!well!
as!visible!indicators!of!competition.!

The!Peer!Review,!Prestige!
System,!and!Bona!Fides!
introduced!to!address!this!
challenge.!

Puzzle!scores!will!serve!as!indicators!
that!can!encourage!competition.!Players!
can!collaborate!on!puzzles.!Team!
competitions!will!also!be!designed.!
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On closer examination, FoldIt, EyeWire, and Zooniverse all share multiple features: 

• they solicit players through their interest in the science task,
• they present the science task without any narrative elements or story skin,

• they provide players with a large number of simple tasks, and
• the players can solve each task quickly, and feel good with each result.

We corroborated these observations by interviewing Xylem players, who requested simpler 
problems and more visibility into the science task (and complained about the absence of these 
features in Xylem). In addition, players indicated a strong, de-motivating influence from the need 
for a lengthy Xylem tutorial. 

These interviews, and analyses of citizen-science games caused us to rethink the design of Safe 
Passage. In particular, Safe Passage had none of the features in the above list: it disguised the 
science task, it added an ecological narrative, each maze construction task appeared to be 
relatively heavy weight, and the two-stage model of game play imposed a delay between player 
action and reward. Moreover, the maze-construction task was sufficiently complex to require a 
lengthy tutorial. As a result, we concluded that Safe Passage, as designed, would badly misfire, 
and that we needed a simpler and more direct approach to a data-segmentation game. 
Our core idea was to doff the narrative elements and phrase the game purely as a classification 
task with the goal of distinguishing good program states from bad. In principle, this approach 
would offer a cleaner design, and a simpler game mechanic that would enable rapid game play. 
That said, we began to explore visual concept models for the classification task, as a means of 
refining the game design.  

The following sequence of sketches 
(Figures 26a/b/c) chronicles the design 
evolution during this period. Each 
sketch carried a code name, e.g.,  The 
Dance of the Restless Eagle.  
Figure 26a expresses program states as 
labeled circles (vs fish or shells in Safe 
Passage), and displays the vector of 
variable values corresponding to each 
program state on the right.  

In this example, each program state 
contains values for four numeric 
variables collected at successive 
iterations of a loop. These states only 
represent good data that is produced 
by the loop, as the depiction of bad 
states was not yet clear. 

Figure 26a. Dance of the Restless Eagle 
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Figure 26b, a month later, adds visual elements for good and bad program states, and reduces the 
display of variable values to selected program states (the white box). This sketch also groups 
states into sets characterized by a given filter, where each filter corresponds to a (possibly 
complex) Boolean predicate. We imagined that players would generate these sets by applying 
filters from a predefined list (shown in blue), but the mechanic for applying filters was not quite 
clear at this stage of the design.  

Figure 26c, another month later, clarifies the remaining elements of the classification model. It 
depicts a binary tree, where each branch represents the application of a filter that segments the 
program states present in the parent node into two sets, one containing states that pass the filter 
and one for states that do not. The values of program variables are largely absent in this sketch, 
while the filters are organized into a matrix of roll-over buttons that provide some indication of 
their score (larger and brighter is locally better).  

In this design concept, players act by selecting a node from the tree, and clicking on a filter. 
They perform the science task by repeating that sequence.  

As a whole, this mechanic is quite simple, resulting in rapid game play, and a minimal 
requirement for any tutorial. This design sketch contains most of the technical elements that were 
finally present in the next CHEKOFV game. While many art and user-interface elements continued 
to evolve, the key remaining technical features concerned reward structure, and constraints for 
managing screen real estate. Both of those proved important to the scientific value of the results 
produced through game play.  

Figure 26b. The Quest of the Black Opossum 
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Additional features, such as the reward screen shown in Figure 27, were subsequently added in 
the evolving game design that became Binary Fission. 

Figure 26c. The Oath of the Burgundy Amoeba 

Figure 27. Motivating players by acknowledging their achievements 
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3.5.4 Binary Fission. Binary Fission employs a classification metaphor for finding invariants. 
Although it applies to several forms of invariant finding tasks, our deployed version specifically 
addresses precondition discovery. At the technical level, the game inputs a program annotated 
with postconditions, a set of predicates relating program variables, and two sets of initial 
program states (each state is a vector of variable values), where ``good'' states satisfy the 
assertions, and ``bad'' states violate those assertions on program execution. Each Binary Fission 
player employs the available predicates to find a classification tree that separates good states 
from bad. This tree defines a logical formula representing a likely invariant. 
At the game level, Binary Fission hides the nature of the program, states, and predicates from the 
player. Instead, it presents players with a set of gold and blue nodes (representing good and bad 
states, internally), mixed together inside a container. The player's goal is to separate the gold 
from the blue using a set of filters (corresponding internally to predicates), which are capable of 
partitioning the states. Different filters create different splits, and the player's job is to decide 
which filters to apply, and in what order. The recursive application of filters leads to the creation 
of a binary tree, as shown in Figure 28. Here, the conjunction of filters leading to a leaf node 
characterize the states in that leaf, and the disjunct of expressions describing each leaf constitutes 
the classification function defined by the entire tree.  

Figure 28. The Binary Fission player interface 
Playing Binary Fission produces classification trees. Players act by selecting a node from the tree, 
and clicking on a filter, which bifurcates the selected node into two child nodes containing the 
states that pass, or fail to pass the filter. The game offers the player several hundred filters to 
choose from. The are presented in a rollover format, with visual feedback illustrating each filter’s 
ability to separate good from bad states, together with its impact on game score. This format 
allows players to rapidly search the space of possible filters, and generate many classification 
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trees. This design is intended to provide citizen scientists with an undisguised science task, and 
an easy to use interface that facilitates rapid progress and many incremental achievements. 

Each classification tree produced through Binary Fission is typically partial: some leaf nodes 
only contain good states, some only contain bad states, while others contain a mixture. In 
addition, the solutions are idiosyncratic, as the players generally employ different subsets of 
filters during game play. As a result, the game software combines descriptions of pure good 
nodes and pure bad nodes across solutions to obtain a consensus view of the likely invariant.  

3.6 Abstract interpretation, invariant learning, and crowd-sourcing 
Binary Fission and Xylem form part of the suite of tools and techniques for invariant learning in 
our overall system. As shown in Figure 29, they join Daikon and decision-tree learning as 
invariant learning resources for CHEKOFV; other capabilities supported by the system are the 
Artisan&Crafters interface for paid workers, and the published CHEKOFV Robot API, for use by 
external automated-tool builders.  

Figure 29 illustrates the iterative flow in CHEKOFV that supports the learning of likely invariants 
to assist abstract interpretation, which is based on Frama-C Fusy, Value, and other related plug-
ins. The process takes a given terminating C program as input and returns either a proof of 
correctness or a copy of the input program annotated with the learned invariants and a set of 
assertions that could not be verified.  

Figure 29. Abstract interpretation and invariant learning in CHEKOFV 
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The procedure for program analysis consists of the following steps: 

1. Initialize: At every program point, initialize the likely invariant to true, the sets of
good states and bad states to the empty set, and go to step 2.

2. Update1: Update the likely invariant at each program point using the abstract
interpretation provided by Frama-C. Terminate with success if all assertions are
verified. If the likely invariants are left unchanged, go to step 5.

3. Update2: Find new good states that lie outside the current likely invariant, and new
bad states that lie inside the current likely invariant. When found, add them to sets of
good and bad states at each program point. Else, go to step 5.

4. Update3: Use the current set of good and bad states to learn an invariant, using
machine learning and crowd sourcing. Update the likely invariant at each program
point using the newly learned likely invariants. If we fail to separate good and bad
states go to 5, otherwise go to set 2.

5. Terminate: End, with likely invariants as hints for the verification engineer.
Here are the different pieces of the above procedure, as implemented in CHEKOFV. 

3.7 Frama-C Value plug-in 
CHEKOFV abstract interpretation is undertaken using the Frama-C Value component. This plug-
in computes, at each program point, an abstract state that over-approximates the set of all 
possible states the program may be in at that point. The abstract state is a mapping from every 
memory location to the set of possible values that this location may currently have.  
If the value is an integer, possible values are represented using an interval and a modulo as soon 
as the number of such values becomes too large (small sets are represented in an exact way). If 
the value is a floating point, only an interval is used.  

Pointers in Value are represented using an interval per memory region where the pointer may 
point. Frama-C generates a warning if it cannot prove that the execution of an (implicit) 
assertion always succeeds from the current abstract state. If Frama-C does not generate any 
warnings, then the program is provably safe and our analysis terminates.  

If Frama-C fails to prove that the given program is safe, the program either has a genuine error, 
or some of the abstract states were too imprecise to prove the program’s safety. To refine this 
result, CHEKOFV try to learn likely invariants for each program point.  
3.8 Sample concrete states 
For a given program point in the input program, Frama-C computes a corresponding abstract 
state. This abstract state, as depicted in Figure 30, contains a subset of good states and bad states. 
Good states are program states from which the program terminates normally. Bad states are 
(possibly unreachable) program states, which lead to an assertion violation. Further, the abstract 
state may contain states that are not reachable but also do not violate any assertion and states that 
are reachable but lead to non-termination (we do not handle non-termination). CHEKOFV now 
tries to learn an invariant for this (abstract) program point that excludes all bad states and 
preserves all good states.  

Note that, if the program is actually unsafe, such an invariant cannot be established because there 
exists a reachable bad state starting from this program point. That is, these invariants (when 
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violated) can help the verification engineer to trace a safety property violation back to its origin. 

Unfortunately, the set of good and bad states cannot be computed automatically (otherwise we 
would not need abstract states), so CHEKOFV can only approximate the invariant that it is looking 
for. To that end, CHEKOFV uses dynamic execution where available (i.e., test cases) or symbolic 
execution to sample good and bad states. As sampling the good and bad states is only an under-
approximation, the likely invariants that we learn may be too strong or too weak. Hence, we may 
need several passes through the program until we find a suitable likely invariant.  

Figure 30. Example of an abstract state 

3.8.1 Collecting states with unit testing. The most pragmatic way to collect program states is 
the run the program analysis on concrete inputs and monitor the programs state during the 
execution. This can be done either if the application under analysis comes with a set of test cases, 
or by using randomized test input generation on isolated units. To that end, we implemented an 
application similar to Randoop [26] that automatically generates test cases for each method in a 
file. For each method, we generated several sets of test inputs, which are assignments to all 
parameters that the procedure expects and to the global variables that may be used by this 
procedure. As test oracle (i.e., to decide whether the test succeeds or fails), we used a simple 
crash oracle; if the execution of the procedure on the generated input raises a segmentation fault 
or violates a (implicit) run-time assertion, we marked the test as failed.  
For each test (either provided or generated), we ran the application under analysis with a 
debugger (gdb) attached. At each procedure entry, procedure return, and loop entry, we paused 
the programs execution using the debugger and record the current value of all program variables 
and stored them in a file. We automated this process using the Debuggers Python interface. If the 
test case failed (either due to exceptional termination, or because the test oracle marked it as 
failed), we added all collected states to the set of bad states. If the test succeeds, we add all states 
to the set of good states. 
As file format for the recorded states, we used the dtrace-format that was introduced by the 
Daikon tool. Using this file format immediately allowed us to generate likely invariants using 
Daikon and also made it easy to interface to other machine-learning-based invariant-discovery 
tools like DTInv [14] or MCMC [27].  
3.8.2 Collecting states with symbolic execution. For smaller the examples in our experiments, 
such as TCAS (See Appendix 5) or certain modules of BIND, this dynamic approach for 
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collecting states worked well and collected large quantities of good and bad states in a very 
reasonable time. For other applications, however, this approach did not work well or could not be 
applied at all. For example, for parts of BIND, the available regression tests only executed small 
parts of the system, and randomly generating inputs for an application that modifies the file 
system and accesses the network is not feasible. For the autopilot software in the Paparazzi 
benchmark, we could not apply this approach at all, because the software only runs on ARM 
architectures and thus, it is not possible to attach a debugger in the same way as for other 
applications. For TCAS and other smaller benchmarks, however, testing turned out to be an 
efficient way to sample good and bad states as we will discuss later. 

3.9 Fusy plug-in for Frama-C 
For those benchmarks where sampling states using testing was not feasible, we developed a 
symbolic execution. The symbolic execution was developed as a plugin for Frama-C called Fusy. 
To sample bad states, Fusy checks if an error state is reachable from any state in the abstract 
domain of the current program point. That is, it turns the current abstract state, computed by the 
abstract interpretation, into a precondition (or an assume statement) for the symbolic execution. 
For each variable v with an abstract domain v ∈ [min, max], Fusy then adds a conjunct min ≤ v 
≤ max to the precondition. If Fusy finds a reachable error state under this precondition, this state 
is added to the set of bad states. If the program point being analyzed is the program entry, or if 
we know that our precondition only describes reachable states, we have found a genuine error.  
However, because CHEKOFV may insert a too strong invariant as intermediate result, the 
symbolic execution of Fusy may fail because the set of possible states to start from is, for 
example, empty. To avoid this problem, Fusy also checks if there exists a state outside the 
current abstract domain from which an execution terminates normally. Here, Fusy proceeds in a 
similar way as for the bad states but it computes a precondition for the complement of the current 
abstract state. This step is important to prevent the machine learning from producing overly 
strong likely invariants.  

Fusy can also identify good states by symbolically executing the program from a given location 
until the end. Because it only has to find one symbolic execution that terminates normally, this is 
usually not prohibitively expensive, even for large programs. The bottleneck for this step was the 
handling of loops. If symbolic execution had to unroll a loop that cannot be exited after a few 
iterations, Fusy often got stuck if no invariant for the loop was present. To avoid this problem, 
we implemented several optimizations in Fusy and in the overall CHEKOFV loop to handle loops 
with priority. 
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3.9.1 Extensions to symbolic execution. Fusy first searched the different loops of the program 
or of a particular function. It attributed a unique number to each of them. This number had then 
been used by all the components of the CHEKOFV architecture to refer to identify each loop.  

For each loop, Fusy first sliced the 
program to preserve the loop’s behavior 
by removing all statements that were not 
required to preserve the behavior. 
Consider for instance the C program in 
Figure 31. The slicing step generates a 
new program that does not include the 
marked statement because the variable z 
is not necessary to preserve the loop's 
behavior. That is, the slicing generates 
smaller programs in terms of number of 
statements and number of variables, 
which makes it more admissible to the 

symbolic execution in Fusy. 
To ensure the correctness of the slicer (that is, not to remove useful statement), Fusy must 
resolve pointers: for instance, if 2 pointers p and q are aliased and hence point to the same 
memory location, and if *p is used in the loop under analysis, statements modifying *q must not 
be removed.  
For such pointer resolutions, the Frama-C slicer used the abstract states computed earlier by 
Frama-C’s value analysis. Value analysis computed an over-approximation of all the possible 
values of each variable (including pointers) of the program at each program point. All these 
approximations are stored in an internal table and any Frama-C plug-in (e.g., the slicer) can then 
ask for an approximation of the possible values of a particular variable at a particular program 
point.  
To generate sequences of values for the variables of each loop, Fusy performed symbolic 
execution on each previously generated program by running Value Analysis. However, it might 
be required to set some Value Analysis' specific options to be precise enough.  

During this execution, Fusy modified the standard behavior of Value Analysis to track and 
register each value of the variables used in a loop at the point of interest (before entering the loop 
and after each loop iteration), whenever these values was precise enough.  

When Fusy got the expected length of the sequence of values, it stopped the symbolic execution 
to run faster. That is, the states computed by the symbolic execution only represent a fixed 
number of executions of the loop body. While this may not be sufficient to find a proper loop 
invariant that holds in a larger context, this step helps in practice to facilitate the generation of 
good and bad states needed for the crowd sourcing.  
3.10 Invariant learning 
Once CHEKOFV has collected sets of good and bad states via testing or symbolic execution, it 

int fact(int x) {
 if (x < 0) return -1; 
 if (x <= 1) return 1; 
 return x * fact(x - 1); 
} 
int main(void) {
 int x = 5; int y = 10;
 int z = fact(100); 
// removed statement
 while (y > 0) {
  x++;  y--;
 } return 0;

}

Figure 31. Example program to illustrate 
Fusy's slicing functionality 

50
Approved for Public Release; Distribution Unlimited



starts looking for likely invariants. Finding such likely invariant can be seen as a binary-
classification problem in machine learning. CHEKOFV is looking for an approximation of a 
function that labels all good states as good and all bad states as bad at a given program point. The 
connection between invariant generation and classification has been explored in many recent 
works. While one of the key assumptions of CHEKOFV is that crowd sourcing can outperform 
machine learning in this domain, we still applied machine learning to get some initial candidate 
invariants and iterate the loop from Section 0 to collect additional good and bad states. To that 
end, we used two machine-learning tools: Daikon [5] and DTInv [14]. 
Daikon takes a set of program states as input, and infers a logic formula that holds true for each 
state in the given set. We applied Daikon separately to the set of good states and to the set of bad 
states, for each program point for which we collected such states. As a result, we obtained an 
initial set of likely invariants. 
We also used DTInv, which is a decision-tree learner that takes a set of good states and a set of 
bad states as input and generates an invariant that includes all good states and excludes all bad 
states. Because DTInv performs a classification task, the invariants generated turned out to be 
logically stronger than the invariants generated by Daikon, but they often over-fitted the desired 
solution. 

Later we discuss how we can crowd source this step using games. However, we emphasize that 
the CHEKOFV algorithm theoretically can be applied purely using machine learning without any 
crowd-sourced inputs. In this case, CHEKOFV will produce results that are very similar to the 
ones of DTInv and MCMC. Being able to run the system start to end without using the crowd 
sourcing was important to us because it allows us to efficiently evaluate and benchmark the 
benefit of using crowd sourcing.  

3.11 Closing the loop 
After performing the initial abstract interpretation, collecting good and bad states, and learning 
likely invariants using either machine learning or crowd sourcing, CHEKOFV has completed one 
iteration of its process. The task now is to feed the newly learned likely invariants back into the 
program under analysis.  
To that end, we developed several plug-ins for Frama-C and other components. The key new 
elements in this part of CHEKOFV are Invemerger, Quickcheck, and Hardcheck. The role of these 
tools in the broader context of CHEKOFV is shown in Figure 32.  

In Step 5 of this figure, the Game Server issues instance sets to Xylem or Binary Fission players. 
Solvers explore the patterns presented, and provide potential invariants. Artisans & Crafters (the 
expert solver web interface) and the Robot API may also be used to receive instance groups. The 
solutions generated are passed to Invmerger and Quickcheck (step 6), which adds them to the 
Hasse invariant lattice (step 7) to provide an initial ranking evaluation. Quickcheck returns this 
result to the solver, and also draws upon the instance database source code information to 
generate a .sav file for further invariant validation by Hardcheck (step 8). In step 9, Hardcheck 
confirms or refutes the invariant, and updates Quickcheck with its findings. Refuted invariants 
are transitioned back to Frama-C to generate more Fusy instances.  

51
Approved for Public Release; Distribution Unlimited



Figure 32. Verification flow supporting multiple crowd-sourced tools 

We now discuss each of these new components in more detail. 
3.11.1 Invmerger. Invmerger is a Frama-C plug-in that inserts invariants learned by CHEKOFV 
in the C program at their right places. Invmerger takes a list of pairs of invariants and labels as 
input. The labels refer to Frama-Cs internal representation of C programs to ensure that the 
location in the code is not affected when inserting or removing invariants from the code. 
Further, Invmerger supports a special keyword slideNum which referred to the Fusy variable 
corresponding to the number of loop iterations. This keyword can be seen as a ghost variable that 
can be used by the games to allow players to build more expressive invariants. Invmerger can be 
easily extended to use other types of ghost variables. 
3.11.2 Hardcheck. The goal of Hardcheck was to verify each candidate invariant that has been 
inserted in the C program by Invmerger. Hardcheck is primarily based on the Frama-C WP 
(Weakest Precondition) plug-in to verify the candidate invariants. If Hardcheck succeeded in 
proving that a candidate invariant is in fact an invariant, the invariant is left in the code. If 
Hardcheck failed to prove that a candidate invariant is an actual invariant, it tried to generate a 
counter example that witnesses why that the candidate invariant can be violated. Such a counter-
example is a sequence of program states along a control-flow path from an entry point of the 
analyzed program to the location where the candidate invariant has been inserted, such that the 
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candidate invariant is violated when reaching that location. That is, we can add this counter-
example immediately to the sets of learned program states and remove the candidate invariant 
from the program. 
The Frama-C plug-in WP is based on Dijskra's Weakest Precondition Calculus. For each 
program property to be verified, this analysis technique generates one or several so-called proof 
obligations (PO). If all POs are verified, then the corresponding program property is verified. 
These POs used to be verified by other means (usually either automatic theorem provers or proof 
assistants). In CHEKOFV, we relied on the automatic theorem prover Alt-Ergo.  
Weakest precondition calculus is a modular-analysis technique. Thus WP analyzed a single C 
function f without the implementation of the others. However, if f calls another function g, WP 
requires a contract (i.e., specification) for g to reason about f. If the function g has no 
specification, it is not possible to prove anything interesting about the function f. Because writing 
such specifications by hand would contradict with the goals of CHEKOFV, we chose to inline 
every function call that WP needs to examine to generate the POs of all the loop invariants. This 
inlining step is done prior running the above-mentioned algorithm.  

3.11.3 Generation of Candidate Counter-examples. Some automatic theorem provers, in 
particular Alt-Ergo, are able to generate a 'counter-model' when they conclude that a given proof 
obligation is not valid. This counter-model explains why the property is not satisfiable using uses 
the prover's internal logic constraints.  
From this prover's counter-model, the plug-in 'Counter-example' generates a new function 'main' 
for the C program in order to express the logic constraints according to the input variables of the 
C program.  
Running this C program from the new function 'main' should violate the unproved property. 
However, there is no guarantee that the prover's counter-model does violate the property and thus 
that the generated counter example does violate it. Indeed, it used to not be the case if the prover 
reaches its timeout before either validating or invalidating the property: here its returned counter-
model is just its current state and there is little chance that it is a true counter-model. Thus 
Hardcheck tried to check that the generated counter example is a real one.  
Hardcheck used Frama-C Value plug-in to validate candidate counter-examples. It ran the new 
program from the generated function 'main' and checked the validity status of the relevant 
candidate invariant. Because the input was very precise thanks to the plug-in Counter-example 
(the function 'main' initializes all required inputs), it should be possible to get precise analysis 
results as soon as Value is configured enough.  

3.11.4 Quickcheck. Checking invariants with Hardcheck was expensive. The step required 
several calls to a theorem prover, which can take several seconds or even minutes. In particular 
due to the inlining of procedure calls, Hardcheck often took very long to provide an answer. 
Hence, checking each candidate invariant immediately with Hardcheck would have been 
prohibitively expensive. In particular, because it is to be expected that many players provide 
similar or even equivalent solutions to the same problem. 

We also developed a tool called Quickcheck to perform a cheap analysis of the candidate 
invariants returned by players of the games to decide if Hardcheck should be employed to check 
the invariant, or if we already have a better solution. Quickcheck uses a partially ordered directed 
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graph known as Hasse diagram to maintain a set of candidate invariants for each program point. 
See Figure 33.  
Initially, the set contains only the trivial candidate invariants True and False. Because all 
invariants refer to the same program point, they are over the same set of program variables and 
thus they have an implicit partial ordering over logical implication. That is, given two candidate 
invariants A and B, they are equal in our partial ordering if A=>B and B=>A, if only one 
direction holds we know that one dominates the other, and if neither holds, they are unrelated.  

In this figure, we can see that false is the source because false implies anything, and true is the 
sink because anything implies true. In this example, the candidate invariant C3 implies C1 but 
not vice versa, C5 implies C2, and neither of the others imply each other. 
The Hasse diagram is used to prevent CHEKOFV from performing redundant invariant checks. If a 

new invariant is received, we first check its 
position in the Hasse diagram. This check is 
cheap because it only requires checking logical 
implications of candidate invariants.  

Once the position of a new candidate invariant 
has been found, Quickcheck checks if this 
invariant is stronger (i.e., implied by) than 
known candidate invariants for which WP 
already has concluded that they are too strong 
to be program invariants, or if this invariant is 
weaker (i.e., implies) than candidate invariants 
that are known to be too weak. In both cases, 
Quickcheck concludes that checking this 
candidate invariant is not necessary. If 
Quickcheck establishes that the new candidate 

invariant is logically equivalent to a known candidate invariant, it also discards it. In any other 
case, Quickcheck adds the candidate invariant to the Hasse diagram and calls Hardcheck to 
establish if it is a true invariant, too strong, or too weak. Figure 34 depicts part of a Hasse 
diagram, with more detail about the relationships among individual candidate invariants. 

Figure 33: Example of a Hasse diagram 
for categorizing candidate invariants 

Figure 34. Hasse diagram of relationships among sample candidate invariants 
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Quickcheck was able to prevent a significant amount of redundant computation and also 
provided interesting insight on the type of candidate invariants provided by players. For 
debugging purposes, we also added a time lapse to replay how new candidate invariants are 
being analyzed by Quickcheck and how the Hasse diagram evolves over time. 
3.12 Analysis Termination 
The analysis terminates either upon system verification or when one of following failures occur: 
– Failure to find new good and bad states: Symbolic execution can fail to find new states. This
may happen because the problem of finding good and bad states is undecidable in general and 
very expensive in practice. In this case, we terminate with the last learned invariants as a hint for 
the verification engineer.  
– Failure to classify good and bad states: For crowd sourcing this may happen because the games
do not have enough players, or the needed invariant is not expressible with the tools offered by 
the game. The latter case is equivalent to the case where a machine learner fails due to the choice 
of the kernel functions. Assuming that the language of the game or the kernel function of the 
machine learner are strictly more expressive than the abstract domain of Frama-C, we can 
terminate reporting the last learned invariants.  
– Failure to improve abstract domain with the learned invariants: This may happen because the
language of the likely invariants is more expressive than what can be expressed in the abstract 
domain. In this case, we know that there are bad states that cannot be excluded in the current 
abstract domain and we can report a warning that the current abstract domain is not sufficient to 
verify the program.  

3.13 Sample Plug-in 
To collect data about the candidate invariants provided by players, the progress of the 
verification, and the performance of our tools, we developed several plug-ins and tools, the most 
important of which was Sample.  

Sample is a Frama-C plug-in developed in the context of this project. Its function is to extract a 
concrete state from the results of a Value analysis. This concrete state can then be tested to 
determine if it is actually reachable or if it has been produced by an over-approximation. In the 
latter case, it may be possible to improve the analysis by adding specification statements to the 
code, which exclude this unreachable state from the analysis. That is, the plug-in does not output 
a concrete state but a sample.  

For a given tuple of C expressions, a sample is a corresponding valuation of these expressions in 
a chosen control point of the program. These valuations can either be reachable values from the 
real program or unreachable, i.e. the result of some over-approximation during the analysis.  
The plug-in is invoked through the command line. The user must supply a statement identifier 
where the sampling has to be done and the variables that have to be sampled. For reproducibility 
reasons, the seed used by the random number generator can also be provided. When several 
samples are needed, the user can supply a file in comma-separated-values (CSV) format of 
previous samples. These sample will be excluded from the possible outputs, and the plug-in will 
produce, when possible a new sample.  
The CSV file must start with a line containing the variables sampled, separated with commas. In 
case this line is not exact, Sample will give the expected line. Each following line must have the 
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same number of values (one for each variable) separated by commas. The plug-in will check that 
all these numbers are valid integers or floating-point numbers, based on the variable type.  
We use the result of the Value plug-in execution. This result describes, for each variable of the 
program, a set of possible value. For integers, if this set is small enough, it is given explicitly, 
otherwise, it is given as an interval with modulo information. For floating points, it is always 
given as an interval. The plug-in can also compute such sets for expressions: it combines the 
information it has about each variable of the expression and deduces a set of values for the 
expression. We then sample a value in these sets in a way described in the next paragraph.  
The plug-in integrates custom pseudo-random number generators to generate integers and floats. 
In general, the sampling of values doesn't follow a uniform distribution of number among the 
reachable values. There is only one exception. When the set of possible values for an expression 
is small enough, say less than ten, the value is selected uniformly between those values.  
Otherwise, the value is randomly chosen in the following way. If the value can be either positive 
or negative, its sign is chosen with equal probability. Then, a positive or negative interval of 
possible value is built from this choice and a number is generated in this interval, non-uniformly 
once again. For instance, for integers, the integral base two logarithm (the number of significant 
bits) is chosen first. Then a number with this logarithm is uniformly picked.  

3.14 Plug-ins for CWE progress metrics 
We developed two additional Frama-C plug-ins to evaluate the progress of the verification effort 
in terms of the CWEs that were to be checked. Frama-C automatically inserts run-time assertion 
into the analyzed code for the CWEs 120, 134, 190, and 476. Other CWEs such as 250, 306, 434, 
672, 732, 807, and 863 that depend on domain knowledge can be added by hand. The 
verification progress can now be measured by counting how many of these assertions can be 
verified and how many assertions are rendered unreachable by the generated invariants. 
The first plug-in that was developed collects all warnings emitted by the Value plug-in of 
Frama-C and stores them in a database in a way that these warnings can be queried by category 
or by location in the source code. Before adding invariants to the code, most of these warnings 
will be false alarms that are generated because the value analysis lost precision while analyzing 
the program. As we add invariants to the program, the number of warnings is expected to 
decrease because the value analysis becomes more precise. The main goal of this plugin was to 
identify hotspots where the CHEKOFV failed to improve the precision of value analysis and take 
appropriate measures.  
The second plug-in that we developed collects all statements in an analyzed program that are 
considered unreachable by value analysis. Similar to the previous plug-in, all unreachable 
statements are stored in a database. This plug-in was necessary to identify the impact of overly 
strong invariants. For example, an invariant that strongly constrains input variables may 
eliminate many value-analysis warnings by rendering parts of a program unreachable. To get an 
accurate view of the progress of the verification in CHEKOFV, we used this plug-in to weigh the 
number of verified assertions against the number unreachable statements. 

The resulting metrics from an exploratory case study using the BIND source code are reported in 
Section 4.5. While these metrics features are not part of the final integrated system, they provides 
valuable insights for the development of CHEKOFV, and for spotting bugs during integration. 
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4. RESULTS AND DISCUSSION
To showcase the capabilities of the CHEKOFV system, we carried out two case studies to detect 
two known security vulnerabilities – the Heartbleed bug and a recent critical bug discovered in 
BIND. We detected these bugs under lab conditions. We already knew where the bug was 
located, and isolated the relevant program parts accordingly. After the case studies, we discuss 
the progress and problems we observed when applying CHEKOFV to the applications BIND and 
Paparazzi. Both are large-scale real world applications that are challenging to any form of 
program analysis. 
This is followed by a summary of our work on state-space metrics, and a feasibility study of 
Xylem using SV-COMP verification benchmarks. Next, we report on insights gathered on the 
benefits of using crowd sourcing compared to existing machine-learning techniques, which is 
based on data collected from applying CHEKOFV tools to the standard verification benchmarks. 
At the end of the section, we provide some player productivity data for Binary Fission. 

4.1 Case Study 1: OpenSSL – Heartbleed Bug 
We explain how CHEKOFV works by dissecting the well-known Heartbleed bug in OpenSSL. The 
code snippet that caused the bug is sketched in Figure 35. For space reasons, we omit a few lines 
that are not relevant to understanding the bug.  

The bug is a missing bounds check in the heartbeat extension inside the transport layer security-
protocol implementation. A heartbeat essentially establishes whether another machine is still 
alive by sending a message containing a string (called payload) and expecting to receive that 
exact same message in response. The bug is that, although the message also contains the size of 
this payload, the receiver does not check if this size is correct. Therefore, an attacker can read 
arbitrary memory by sending a message that declares a payload size that is greater than the actual 
message.  
Figure 35 shows the part of the code that processes a heartbeat message. On line 3, the pointer p 
is set to point to the beginning of the message. Then, on line 8, the message type is read, and on 
line 9, the size of the payload is read through the macro n2s which reads two bytes from p and 
puts them into payload. However, because the whole incoming message might be controlled by 
an attacker, there is no guarantee that this payload really correspond to its actual length and there 
is no check in the code. Payload might be as much as 216 − 1 = 65535. Line 10 then puts the
heartbeat data into pl.  
In line 15, a buffer is allocated and its size is actually as much as 1 + 2 + 65535 + 16 = 65554. 
Then lines 18 and 19 fill the first bytes of the buffer with the type and the size of the response 
message. Finally, line 21 attempts to copy the heartbeat data from the incoming message to the 
response through a call to memcpy. Because the payload can be longer than the actual size of pl, 
nearby memory data (included potential confidential user data) may be inadvertently copied.  

Frama-C can detect this bug. It adds an implicit assertion just before the memcpy that bp and pl 
must be at least of size payload. Because it cannot prove this property, it warns about a potential 
bug. However, because this is not the only warning emitted by Frama-C, chances are it will go 
unnoticed.  
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Figure 35. Faulty code that processes a heartbeat message in OpenSSL. 

Let us now see how our approach can make it easier for a human analyst who is using Frama-C 
to notice this bug. First, even if it does not appear in Figure 35, p is fixed and equal to SSL3 RT 
HEADER LENGTH. Starting with the abstract state computed by value analysis at line 10, the 
abstract state looks roughly as follows:  

hbtype ∈ [0, 255] (a one-byte positive integer) 

payload ∈ [0, 216 − 1] (a two-byte positive integer)

sizep = SSL3 RT HEADER LENGTH − 3 

padding = 16 

For readability, we use this abbreviated version of the abstract state computed by Frama-C. The 
actual abstract state would contain a lot more information about the input parameter s, about the 
value of p, pl, and about other global variables. The important thing in this abstract state is that 
payload can be an arbitrary two-byte unsigned integer, while the size of the allocated memory for 
pointer p is fixed and equal to SSL3 RT HEADER LENGTH − 3.  
Because none of the variables in the abstract state depicted above are modified by any statement 
until line 21, these variables will have the same intervals. Hence, the implicit assertion that 
payload ≤ sizep which is required by memcpy does not hold.  

Now, we use symbolic execution to refine our abstract state just before line 10. We pick this 
program point because it assigns a value from an unknown source to a variable. CHEKOFV refines 
all states where we receive unknown inputs (user input, files, network, and so forth), or we lost 
information due to widening (e.g., after loops).  
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First, we collect bad states that lead to assertion violations. To that end, we construct a 
precondition that ensures that the symbolic execution may only pick initial values that are in our 
current abstract state. The symbolic execution will then search for concrete states from which the 
assertion can be violated. Next, we need to collect good states from which the assertion is not 
violated. We can either use the same symbolic execution approach that we used to collect bad 
states or fall back on data from previously recorded test cases, if available.  

Figure 36 shows the distribution of the collected data points for payload and sizep. As discussed 
above, all good states (depicted by a plus sign) are states where sizep is greater or equal to 
payload. All bad states (shown as a minus sign) are states where payload is greater than sizep. 
Using these data points, we can now employ our crowd-sourcing games (or a machine learner) to 
find a classifier (that is a likely invariant) that separates the good states from the bad states. The 
ideal classifier would be payload ≤ sizep. However, let us assume that our symbolic execution 
picked extreme values and we get an over-fitted invariant 2 ∗ payload ≤ sizep. 

Figure 36: Distribution of data points for payload and sizep. 

We merge the invariant 2 ∗ payload ≤ sizep into the program at line 10 and re-run our value 
analysis. The invariant refines the abstract state at line 10 such that payload is in the interval [0, 
sizep/2]. Hence, the assertion violation in line 21 is now gone and we know that we cannot find 
new bad states that violate this assertion. However, we still have to ensure that the inserted 
invariant did not throw away too many good states. Thus, we start our symbolic execution again, 
this time with the precondition that the invariant does not hold (i.e., 2 ∗ payload > sizep and thus 

the abstract value of payload is [size p/2 + 1, 216 − 1]). This reveals new good states that ensure
that we cannot find the same invariant again. This loop is repeated until we cannot find new good 
or bad states. We mark likely invariants where this is the case as potential solutions. However, 
we do not stop the crowd sourcing immediately because there might be several invariants that 
have this property.  
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Eventually, CHEKOFV finds the invariant payload ≤ sizep for line 10 which is sufficient to prove 
the assertion in line 21. We cannot actually prove that this is an invariant (in fact it is not an 
invariant because there is a bug). It is a likely invariant that helps the verification engineer when 
verifying the program.  
4.2 Case Study 2: BIND – CVE-2015-5477 
Our second case study tried to use CHEKOFV to find a recent critical bug discovered in BIND, 
which was reported July 28, 2015. Similar to the Heartbleed bug in the previous case study, this 
bug can be exploited by an attacker by sending manipulated packages to BIND. Even though the 
bug does not immediately leak confidential information as does Heartbleed, it can still be 
exploited to shut down BIND remotely, acting as a denial-of-service attack. 
Figure 37 shows the code snippet from BIND that is relevant to the vulnerability. In the method 
dns_tkey_processquery in tkey.c, BIND handles a message received from the network. To that 
end, it uses the method dns_message_findname to extract information from the received message. 
One of the arguments to dns_message_findname is a piece of memory called name where the 
method can write its response.  

Figure 37. Code snippet illustrating the vulnerability in BIND 

To ensure that dns_message_findname does not overwrite received data, it asserts that this 
variable name points to unused memory (see line 2352 in Figure 37). The problem is that 
dns_message_findname might be called twice in tkey.c: first in line 650 and then again in line 
657, depending on the content of the received message. However, the variable name is not being 
reset after the first call and thus, the assertion may be violated by appropriate input. 

Figure 38 shows how CHEKOFV sampled data in our case study. CHEKOFV treats the method 
dns_tkey_processquery as an entry point (because it is reachable from network input), and starts 
sampling good and bad states using symbolic execution (because we assume that there is no test 
case witnessing this bug, otherwise it would have been fixed earlier).  
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Figure 38. Example of how CHEKOFV samples data for invariant learning. 
As sample points, CHEKOFV uses the entry and exit point of dns_tkey_processquery as well as 
one point before and after each method call inside dns_tkey_processquery (including the points 
before and after the calls to dns_message_findname). Figure 38 shows a simplified version of 
what the collected data may look like for the sample point before line 657. The value result must 
be NOTFOUND, otherwise, the line would not be reachable. The value of msg can be arbitrary 
(for both good and bad states), and the value of name must be null for all good states, and can be 
anything other than null for all bad states. 
Figure 39 shows how CHEKOFV learned an invariant from the sampled data. The good and the 
bad states separately are processed by Daikon and passed to Xylem to find predicates 
summarizing these sets. Then, the good and bad states, together with the set of learned predicates, 
are passed into a decision-tree learner and Binary Fission to find the likely invariants.  

Figure 39. Learning invariants from sampled data. 
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For our example, CHEKOFV easily identified the invariant that name must be different from null 
before line 657. Because this invariant does not hold, symbolic execution can find a counter 
example that exposes the vulnerability.  
4.3 BIND Analysis 
During the project, it became clear that analysis of the entire BIND source code base was 
essentially out of reach for the current generation of Frama-C analyzers. This challenge code 
base also posed significant problems for the game-instance generation and results-integration 
parts of CHEKOFV. However, there were several valuable insights in this work, outlined in the 
next section, which were drawn from our work with certain subsets of the code. Subsequent 
sections discuss a number of the core challenges encountered with the BIND code base.  

4.3.1 Research Contributions from BIND Analysis. Key findings that emerged from our 
work with certain subsets of the BIND codebase include:  

- Unit Tests: These are a simplified setting, as they are supposed to have all values 
deterministic. This is not the case in practice, e.g., because of imprecision of our 
modeling of functions in the C library or of the testing framework, or because some of 
the loops could not be completely unrolled without a prohibitive cost. Despite these 
problems with the simplified settings of unit tests, we determined the correct process for 
replacing the custom allocator by standard malloc/free calls in this setting. We were able 
to improve the completeness of our C library stub, as well as its accuracy. 

- Small Binaries: The main binary of the BIND code base is the named binary that 
implements the name server. However, BIND also includes a number of other "small 
binaries", for example a series of command-line utilities. Using the work done on the unit 
tests, we were able to successfully analyze many of them (genrandom, arpaname, 
nsec3hash,...). Unfortunately, these binaries did not contain an adequate selection of 
comprehensive loops that could be used for game-level instance generation. 

- Modular Analysis of BIND Code: Instead of starting from main, we ran Value starting 
from all the functions of BIND that contained loops, in a restricted setting where 
arguments to functions could not alias each other. We stopped the execution after a two-
minute timeout. About half of the functions were successfully analyzed using this setting. 

Additional new tools and techniques developed in this work are described in Sections 5 and 6. 

4.3.2 Large code base. The size of the source code for the main BIND binary (named) is very 
large, which implies that a whole-program analysis takes a long time. This is especially the case 
for value analysis, where function calls are handled using in-lining. The result was a significant 
difficulty in debugging the analysis; as the analysis did not terminate, it was difficult to 
understand what went wrong. In particular, the loss of precision when analyzing named appeared 
after several minutes, which made the cycle modification/test lengthy. 
4.3.3 Precision loss. As a complex project, BIND defines a lot of data structures. Some are 
implemented using tagged or discriminating union, i.e. a given region of memory may have 
different, unaligned contents, depending on the value of one field, the tag. It is important to keep 
the different cases separated according to the value of the tag; else the possible values of the 
fields in overlapping memory locations are misinterpreted, and the precision loss becomes large 
(e.g. when mixing pointers and integers). 
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If the path-sensitivity of Value allows it to separate these cases inside of a function, the fact that 
all states are merged on each function return means that we could not avoid merging unrelated 
values, and thus, this precision loss.  
A solution would have been to add relational invariants describing that the value of some fields 
depend on the value of the tag. But these are difficult to add to the current memory model of 
Value, for which the fact that abstract values are non-relational is a fundamental assumption (the 
memory model associates to each memory location a set of value, which prevents storing 
relations between memory locations).  

However, trying to combine this modeling (memory location -> set of values) with relational 
information between the values led to interesting results in the design of the Codex analyzer.  

4.3.4 Custom memory allocator. Several of our value-analysis problems were exacerbated 
due to the use of a custom memory allocator in BIND. By nature, a custom memory allocator 
uses the same memory region to store multiple pieces of information, and uses discriminating 
unions everywhere; this means that a slight imprecision in the allocation leads to a 
disorganization of all the heap-allocated memory content. For example, in a conditional, if one 
branch does an allocation while the other does not, there is an imprecision in the index and the 
contents of the heap quickly becomes completely imprecise.  
The most practical way we found to handle this problem was to replace this custom allocator 
with q standard call to malloc and free, which are handled directly by Frama-C internal 
primitives. However, the interface of this allocator is large and correct handling of it required a 
large effort. Even with this effort, the memory model used by Value assumes a finite number of 
memory allocations, which still leads to dynamic allocations done in loop and dynamic 
allocation of an unknown size being handled imprecisely.  
4.3.5 Recursion. Frama-C uses a finite memory model, so that essentially local variables can 
be allocated at most once, like global variables. It also uses dynamically in-lined procedure calls 
to every function. The result is that recursion cannot be directly supported by the analyzer. 
Approaches to handling recursive cases are either to rewrite the affected functions by hand, or 
introduce an ANSI/ISO C Specification Language (ACSL) function contract to be used by the 
recursive calls. Both of these solutions require a deep understanding of the code under analysis. 
Undertaking this manual work for BIND was unrealistic within the scope of the project. On this 
project, we developed a syntactic recursion-detection tool that detects connected components in 
the syntactic call graphs (i.e., that ignore calls occurring through function pointers). This tool 
found 28 distinct connected components, often with 8 functions inside the connected components. 
However, building an ACSL specification for large connected components is difficult, because it 
must summarize accurately the action of a large chunk of code, and is therefore a difficult 
undertaking. Furthermore, such contracts often need to address recursive data structures such as 
red-black trees. While these can be expressed in ACSL through the use of logic functions, value 
analysis is not equipped to use them.  

Finally, it is likely that syntactic recursive components are just a small part of the BIND 
challenge. Because BIND uses function pointers extensively, it is possible that our tool 
overlooked many potential recursive components. For example, a significant recursion error that 
we encountered was a recursive call to isc_assertion_failed, where the assertion check routine 
called an error routine through the use of a function pointer, that itself contained assertions.  
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4.3.6 Precision loss due to ACSL. We were unable to use a function definition for various 
reasons, including the recursion challenges and the excessive time needed for analysis. We also 
had to deal with external libraries whose code was not available or was not relevant for the 
analysis of the core BIND source code. 

The result was to introduce ACSL specifications as a way to avoid expansion of parts of the 
program. However, writing ACSL stubs requires an understanding what the code does, to define 
an abstraction of its behavior. Unfortunately, sometimes ACSL is too imprecise for that purpose. 
In particular, ACSL does not distinguish between "possible" and "certain" stores, and thus 
performs imprecise weak updates in many cases.  
In general, when evaluating an ACSL specification, one has to assume the worst, which leads to 
imprecise results. For instance, ACSL allows stating that a memory location contains a value 
computed from two pointers. Unfortunately, in the worst case it is possible to "mix up" (e.g., 
using a xor) the values of the pointers, which leads to an imprecise value that Value cannot 
eliminate. These problems occur frequently, particularly given BIND's use of complex data 
structures (and thus, many pointer manipulation).  
4.3.7 Summary of BIND analysis. Our extended analysis of BIND indicated that whole-
program analysis, like Value, works poorly with such a large code base. Further observations 
may be found in Section 5 – Conclusions. It also became clear that, to address elaborate systems 
like BIND, we need to eliminate some of the fundamental limitations of our tools, in particular 
the finite memory model and the intra-procedural trace partitioning. Some future directions for 
this tool development are outlined in Section 6 – Recommendations. 
4.4 Paparazzi 
4.4.1 Overview. Paparazzi is a complete system of open source hardware and software for 
Unmanned Aircraft Systems (UAS), which is composed of both airborne autopilot and ground 
control components. The ground station component includes mission planning and monitoring 
software, and utilizes a bi-directional data link for telemetry and control. The autopilot is written 
in C; part of the code is generic and compiled in libraries; other parts are compiled after 
generation from a GUI (written in OCaml). Beyond the obvious safety and security critical issues, 
Paparazzi was selected for CHEKOFV analysis for the following reasons:  

• It has a large code base (200K lines of code), with many interesting patterns to analyze.
• The code is embedded, which is generally simpler to analyze. For example, embedded

code usually does not feature recursion or dynamic allocation, which are not handled by
Value. Value has a large record of successful analyses in embedded C code.

• The C code in Paparazzi consists in several different configurations that are assembled
from different components, each of which are typically much smaller than 200kloc.

We successfully completed the analysis of all configurations of Paparazzi that were selected. In 
all cases, the analysis time was relatively short, at worst several minutes.  
The main issue when analyzing Paparazzi was parsing. The compilation of a complete Paparazzi 
autopilot happens in two steps, where one part of the code is written "by hand", but uses 
preprocessing directives to handle different configuration. The other part of the code is generated 
and compiled by the GUI after selection of the configuration options.  
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4.4.2 Results. Our difficulty was to get the source code with the correct configuration option. 
A generated file was identified that contained most of the configuration necessary, from which 
we could semi-automatically write a Makefile from it.  
Our analysis addressed the following Paparazzi source code configurations (fixed wing or 
helicopter, different system boards...):  

- Microjet :: A fixed wing aircraft using the LPC21 board. 
- Bixler :: A fixed wing aircraft using the STM32F1 board.  
- Booz2 :: A quad-rotor using the STM32F1 board.  
- Quadlisam2 :: Another quad-rotor using the STM32F1 board 

The results are summarized in Table 7. The analysis was relatively fast in all cases. The number 
of alarms remained important and could have been reduced by unrolling more loops in the 
analysis. However, this would also have meant less interesting levels for the game players, so we 
set the trace partitioning and loop unrolling parameter to a small value ("-slevel 10").  

Table 7. Analytical results for four Paparazzi configurations 

Configuration% Time% Number%of%alarms% Number%of%analyzed%statements%

Microjet% 16.3s! 121! 5029!

Bixler% 18.3s! 427! 5660!

Booz2% 217.3s! 590! 5720!

Quadlisam2% 34.6s! 900! 6085!

4.4.3 Paparazzi Problem Identified. In the "Booz2" configuration, in src/sw/airborne/led.h, 
there is a led_init() function, which calls a lot of LED_INIT macros, one of set translating to:  
((gpioRegs_t *)0xE0028000)->dir1 |= (unsigned long)(1 << 31); 
This code is incorrect, as 1 is signed, 1 << 31 results in a signed overflow which is an undefined 
behavior. The correct replacement is ((unsigned long) 1 << 31), or (1UL << 31).  

As this is an undefined behavior, the compiler is free to compile code that uses this expression 
arbitrarily. However, this bug is quite common, and in practice the code is compiled as expected; 
however a compiler that would be "too smart" (for instance using the LLVM pass that uses value 
information from the Value plugin) could do something wrong. 

This problem was reported to the Paparazzi coordination group. 
4.5 Cardinal of the state space metrics 
As discussed in Section 3.14, several Frama-C plug-ins were developed to help determine the 
progress of verification efforts. However, measuring such progress was not always producing the 
desired results. Often, the progress appeared to remain constant even after several iterations of 
the verification loop and after adding multiple invariants. This was in part due to that fact that 
invariants provided by the game were limited to expressing invariants about numerical data types, 
or because Weakest Precondition (WP) failed to prove the necessary invariants due to missing 
environment assumptions that have to be provided by a human expert.  
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For these cases, we still wanted to measure if the invariants generated by CHEKOFV are beneficial 
to the value analysis by Frama-C. The metrics we chose is the cardinal of abstract states 
computed by value analysis; the smaller the cardinal, the more precise is the abstract 
interpretation. We illustrate this approach using the following program:  

If we run Value on this procedure, it estimates that the procedure has approximately 111 
reachable states and the intervals n ∈ {17} : i ∈ [17..127] for the local variables n and i. The 
number 111 corresponds to the cardinal of the state space at the end of function main. Because 
the analysis it non-relational, the concretization of this abstract value is:  

{!n! = !17 ∧ i! = !17, n! = !17 ∧ i! = !18!,… !n! = !17 ∧ i! = !127!\} 
That is, the concretization consists in the Cartesian product of all possible values for every 
memory location.  

Now, if we add an invariant to this program: 

Value uses of the provided invariant to refine its results and estimates that there is now only 1 
possible state at the end of this function (which is entirely deterministic) with the intervals n ∈ 
{17} : i ∈ {17}. 

At the end of the increment statement i++, there are 17 possible values for i (between 1 and 18), 
which is also the best possible abstraction for this example.  
The size of this set can quickly become huge. For instance, in a trivial program that takes an 
integer i as input and returns the same integer, we do not know the value of i, which can take 
2^32 possible values (32 being the size of int). If there are m such unknown memory locations, 
the cardinal is 2^(32)^m, which is huge for a program with as many global variables as BIND. 
Using "big integers" to compute this cardinal exactly would have taken a prohibitive amount of 
CPU time and memory.  
For this reason, we decided to use a logarithmic scale to compute the size of the cardinal when it 
can become big, i.e., when computing it for several memory locations. When there is a single 

void main(void){ 
 int n, i;  
 n = 17;  
 for(i = 0; i < n; i++); 
} 

void main(void){ 
   int n, i;  
   n = 17;  
   /* loop invariant 0 <= i <= 17; */ : 
   for(i = 0; i < n; i++);  
 } 
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memory location, 2^32 is a number with a reasonable size, and we used the normal scale, to 
increase precision.  

This "logarithmic cardinal" is stored in a floating point value for two reasons. The first is that the 
result of the logarithm is generally not integral, and using floating point is thus appropriate. The 
second is that we do want a precision loss that is proportional to the cardinal, which is exactly 
what floating point provides.  

In an exploratory case study, we ran the analysis on each function with loops in BIND and 
computed the size of the state for each statement of the main function. We compared the results 
with and without invariants. The results we have using the found invariants show that adding 
invariants reduces the state space in 285 functions (1534 statements). The average state space 
reduction is of 10^13,145 (to compare with the average state space of the program, in the range 
of 10^218,916,217,7821,975).  

While this metric is not part of the final CHEKOFV system, it provides valuable insights for 
debugging the overall system, and spotting bugs during integration. 

4.6 Xylem case study on SV-COMP Benchmarks 
In a first feasibility study, we have generated puzzles for a set of programs from the sv-comp 
loop benchmarks [28]. So far, players of Xylem have solved 9589 puzzles. Out of these solutions, 
5395 were duplicated answers (either exact duplicates or logically equivalent). For 1488 
solutions, Frama-C could verify that they are valid loop invariants, for 6590 Frama-C could 
show that they are not invariants, and for 1511 invariants Frama-C failed to produce a result 
because they contained non-linear expressions that could not be handled by the employed 
theorem prover. This gives hope that even the relatively simple predicates that can be generated 
by Xylem are suitable to assist formal verification.  
We carried out several player interviews to assess the usability of the game. One of the main 
complaints was that players wanted to be able to express transition predicates rather than 
invariant properties. Players complained that they want to state properties such as “x always 
increases by one”, or “y is equal to x from the previous state”. This may be a weakness of using 
the concept of plant growth in our narrative and we are currently exploring ways to improve this. 

Probably the biggest challenge that we are facing for our future work is the scoring system. For 
reasonably large programs, it is not feasible to check player solutions on the server within a 
reasonable time. However, because there are many formulas that hold for a bounded sequence of 
states (including all tautologies), it is vital for the long-term motivation of the game to provide 
immediate feedback about the quality of a solution to the player. 
4.7 Democratizing Verification 
As discussed in Section 3.X, Binary Fission uses a classification model that provides several 
advantages in crowd-sourced verification. In particular, it provides a natural method of 
aggregating results across the experience of the crowd. While there are millions of programs that 
could benefit from formal verification, there are only a few thousand skilled logicians to 
undertake that activity. However, classification eliminates all symbolic reasoning, and Binary 
Fission only requires players to visually distinguish two classes of object patterns. Gamification 
also expands the user base. The net result is that using classification democratizes the 
verification task.  
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Several features of Binary Fission that make the game easy to play also impact the quantity and 
type of solutions found. First, the game suppresses the identity of program states and the 
mathematical content of the predicates used as filters. While this design limits the intuition that 
people can bring to bear on the verification task, it frees players to think less, and explore more 
options while generating classification trees. In conjunction with the roll-over mechanic for 
selecting and applying filters, Binary Fission encourages each player to work quite rapidly.  

This approach has two, possibly hidden, benefits. Relative to the use of an automated 
classification tool (that selects each filter based on some greedy metric), players are free to 
explore locally non-optimal choices. By extension, the crowd as a whole will conduct a very 
broad search over the space of possible classification trees. The net effect is that the crowd will 
look under unexpected rocks, or if you prefer, for treasures in unanticipated locations. This is a 
good use of the crowd for verification tasks. 

Overall, it is unclear whether a game design that facilitates rapid, broad search is better than a 
design that exposes details of the verification task and asks players to apply more problem-
specific intuitions. We developed the relatively abstract classification model in Binary Fission 
because we saw that it would supply the kind of rapid feedback that would make the game 
appeal to citizen scientists. However, a different design might supply the same benefits while 
exposing more of the verification task’s structure. That would be a subject for a future CHEKOFV 
game, after Xylem and Binary Fission. 
4.8 Binary Fission Evaluation 
Once players produce a classification tree, it is easy to read out logical expressions that 
characterize good states and bad states, and those expressions constitute likely invariants. Binary 
Fission classification trees are typically partial, such that leaf nodes can contain either good or 
bad states, or a mixture of both. The conjunction of predicates that links the root to a pure good 
node describes a set of states that satisfy program assertions, and expresses a likely invariant. As 
shown in Figure 40, tracing from the root node to the two pure positive nodes produces P ^ Q 
and P ^ R which form the candidate invariant (P ^ Q) (P ^R). A single player solution can 
contain several such paths. By extension, the disjunction of paths to pure good nodes across all 
player solutions forms the consensus, likely invariant. This results in an expression of the form: 

PureGoodConjunct1 ... PureGoodConjunctn 
Because these expressions are induced from data, they are only likely, or candidate invariants. 
Determining whether an expression is an actual program invariant requires logical proof. In the 
case of precondition finding tasks, and test the consensus likely invariants produced by Binary 
Fission by passing them through the CBMC model checker; an automated tool that calculates the 
logical effect of each program statement on the candidate invariant, and determines if the end 
result implies the desired postconditions. In general, only a small number of the clauses in the 
consensus likely invariant correspond to valid program preconditions. However, we have shown 
that the crowd collectively succeeds at this task, and for non-trivial programs (See Appendix 5).  
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Figure 40. Example of a decision tree produced by Binary Fission. 

To give a sense of the scale, the Traffic Collision Avoidance System (TCAS) is a ~200-line 
aircraft collision-avoidance program, and Binary Fission players found preconditions for 6 of its 
7 functions (see Appendix 5). The likely invariants for those problems contained between 260 
and 700 disjunctive clauses, and of those clauses, 6 to 103 of them proved to be program 
preconditions. For several problems, the top three preconditions explained between ~25% and 
~50% of the data. In other words, the crowd employed Binary Fission to find valid, and general 
program preconditions. Said differently, the crowd (expectedly) finds quite a bit of junk, but 
Binary Fission successfully coordinates a large number of people to uncover valuable 
verification gems. 

4.8.1 Agnosticism of the Classification Model. Our use of classification in Binary Fission has 
an additional benefit for the game’s usefulness as a scientific tool; because the classification 
model is agnostic as to the source of the data, and the source of the primitive predicates used to 
separate that data, we can mate Binary Fission to a wide variety of automated tools. This is 
important because it is generally difficult to produce predicates relevant to an invariant finding 
problem, and to identify good, and especially bad program states. Automated tools for those 
tasks typically involve restrictions on the underlying program. For example, Binary Fission 
employed the Daikon system  to suggest primitive predicates for use in precondition discovery, 
but this restricted our domain of application to algebraic programs with no arrays and no pointer 
variables. Given that the verification landscape is populated with many specialized tools that 
generate predicates or data for particular classes of programs, the agnosticism of the 
classification model opens the door to the maximum number of application paths.  
We became aware of this benefit as the development of Binary Fission progressed. In the early 
stages of the design, we knew that we wanted a sorting mechanic. However, we only realized 
that agnosticism to data and predicate sources was an option when we began to connect the 
nascent game to application programs. Our interest in crowd sourced science also helped to bring 
this benefit into focus. Other classification oriented approaches exist for invariant discovery [14] 
but their emphasis is typically on optimizing execution speed vs opening paths to application. 

4.8.2 Game Features that Impact Solution Quality. Two features of Binary Fission acutely 
affect the quality of the solutions that players find: the game limits the depth of the classification 
tree, and it motivates players via a scoring function that shapes the classification tree. 
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Binary Fission only allows trees of depth < = 5. We originally imposed this limit as a means of 
managing screen real estate, as trees of larger depth contained too many nodes to display at once, 
without reducing them to an impractically small size. (Building game mechanics to scan a larger 
tree would needlessly complicate the player interface.) However, the depth bound also had an 
unintended but fortuitous consequent for the verification task; it forced players to create small 
trees that might partially segment the data, but that could only express logical functions of 
limited complexity (one predicate per tree level). This complexity bound guards against 
overfitting (the tendency to limit the generality of learned expressions by describing every 
nuance in the data) which is a common failure mode of classification systems.  
The scoring function for Binary Fission has a similar history. We introduced it as a somewhat 
arbitrary metric to reward incremental achievements, based on the intuition that it was useful to 
partially separate good states from bad, and especially useful to isolate pure nodes. We also 
wanted to encode several degrees of achievement into the reward function, and these factors led 
us to the following function: 

Here, purity is the maximum over the percentage of good states and the percentage of bad states 
in the node, and size is a count of the states in the node. A and B are arbitrary constants. N is a 
constant that increases with the count of pure nodes, and decreases with maximum depth of the 
classification tree. This scoring function assigns moderate rewards to partial success (creating 
impure nodes), and significant reward to the creation of pure nodes. Moreover, it influences 
players to produce as many pure nodes as possible, as early in the classification process as 
possible.  
This scoring function had its own unanticipated benefit for the verification task. By rewarding 
the creation of many pure nodes at small depth that describe large amounts of data, it selects for 
short logical expressions that have the potential to be useful, and general invariants. These are 
exactly the type of statements that verification engineers seek when solving invariant discovery 
tasks by hand. 

4.8.3 Crowd-sourced Solution Progress. Figure 41 illustrates the crowd's progress towards 
finding a consensus likely invariant in the TCAS problem set. It plots cumulative data explained 
by the crowd-sourced solution, as accumulated in decreasing order of predicate quality (i.e., the 
number of good program states recognized by the conjunctive predicate associated with each 
Pure Good node). This figure supports several interesting observations. First, the top 20% of the 
solutions explain 80% of the data, and this pattern repeats across all problems. This suggests a 
statistical regularity in crowd performance, and an uneven distribution of expertise across players. 
Second, the consensus solution is partial, meaning it fails to explain all the data even after 
incorporating every player's contribution. This is an expected result, as Binary Fission limits the 
depth of player classification trees -- some truths are simply hard to express in bounded space.  
To investigate this point further, we employed a greedy search algorithm to construct a classifier 
for the same problem, over the same primitive predicates. The method used average impurity for 
scoring splits. When invoked with a depth limit of 5, the resulting partial classifier explained 21 
good program states. This splitting metric clearly provided insufficient motivation to distinguish 
Pure Good nodes early in the classification process that have utility for invariant generation. In 
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contrast, the reward metric employed by Binary Fission clearly influenced players to isolate Pure 
Good nodes at shallower depths, with the associated benefit for explaining good program states. 
This pattern repeated across TCAS problems. 
We also tested the expressive power of the primitive Binary Fission predicates by invoking the 
greedy classification algorithm without a depth limit. The result here, and in all 7 TCAS 
problems, was that the predicates had the power to correctly separate all good program and bad 
program states. As a result, our statistics on Binary Fission solutions concern the performance of 
the crowd, not the expressivity of the predicates at their disposal. 

Figure 41. Progress of crowd towards consensus on invariant 

4.8.4 Evaluation Summary. In this evaluation, we addressed the problem of crowd sourcing 
program preconditions, under the model that crowd sourcing offers an alternate, and viable 
method for addressing a difficult task. We have provided an existence proof in the form of the 
Binary Fission game, and we have shown that crowd sourcing is effective by employing the 
game to discover program preconditions for six particular problems. The preconditions are non-
trivial, reasonably general (as measured by data coverage on a test set), and human readable. 
They are also novel, at least with respect to the output of DTInv, which finds likely invariants 
that do not qualify as program preconditions. 

4.9 Recent Binary Fission Productivity 
Figure 42 illustrates recent player participation in Binary Fission.  Spikes may be observed at 
several points as a result of upturns in interest in the project. We believe that the large spike in 
August 2015 is associated with the publicity surrounding the 2015 Usenix Security Symposium, 
where various elements of our work were presented, as well as additional media outreach during 
that period.  
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Figure 42.  Player participation in Binary Fission – mid-May to mid-October 2015 
The number of solutions submitted also tends to spike when new players are recruited. However, 
as demonstrated in Figure 43, we also see upticks in solution submissions that result from 
mailshots to current players, such as the one towards the end of September 2015.  

Figure 43.  Binary Fission solutions submitted – mid-May to mid-October 2015 
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5. CONCLUSIONS

5.1 Whole-program analysis in context 
As discussed in Section 3, our extended exploration of BIND indicated that whole-program 
analysis, like Value, works poorly with such a large code base. Unfortunately, modular analysis 
also works badly because of the heavy use of function pointers in this system. As an example, 
Calcagno, Distefano, O'Hearn and Yang [29] used a modular analysis on big C programs and 
reports the results shown in Table 8. 

Table 8. Results of modular analysis on large C programs [29] 
Program% Version% KLOC% Number%of%

procs%
Proven%Procs% Proven% Time%

Linux%kernel% 2.6.30! 3032! 143768! 86268! 60! 9617.44!
Gimp% 2.4.6! 705! 16087! 8624! 53.6! 8422.03!
Gtk% 2.18.9! 511! 18084! 9657! 53.4! 5242.23!

Emacs% 23.2! 252! 3800! 1630! 42.9! 1802.24!
Glib% 2.24.0! 236! 6293! 3020! 48! 3240.81!

Cyrus%imapd% 2.3.13! 225! 1654! 1150! 68.2! 1131.72!
OpenSSL% 0.9.8g! 224! 4982! 3353! 67.3! 1449.61!
Bind% 9.5.0! 167! 4384! 1740! 39.7! 1196.47!

Sendmail% 8.14.3! 108! 820! 430! 52.4! 405.39!
Apache% 2.2.8! 102! 2032! 1066! 52.5! 557.48!
Mailutils% 1.2! 94! 2273! 1533! 67.4! 753.91!
OpenSSH% 5! 73! 1329! 594! 44.7! 217.81!
Squid% 3.1.4! 26! 419! 281! 67.1! 107.85!

As can be seen, despite the fact that programs known to be difficult were present (such as Linux), 
BIND was the one with the worse results.  

As noted in Section 6 – Recommendations, the CHEKOFV analysis of BIND drove a series of 
insights for enhancing our verification tool set.  

5.2 Scoring scheme in Xylem 
Because a valid Xylem solution with certain numbers of variables or bonus tiles might not even 
be possible in a given problem, we couldn’t simply provide scores based on the number of 
variables or bonus tiles used. Instead we used a model inspired by the science-based game 
SpaceChem (www.zachtronics.com/spacechem/). At the completion of a level, SpaceChem 
shows the player a visualization of how they have performed compared to other players of the 
same level. We adapted this to Xylem by plotting out on a chart the number of variables and 
bonus tiles used by a player as compared to other players of the same puzzle. As discussed 
earlier, if a player used the same or greater number of variables (and, separately, bonus tiles) 
than the highest number used so far by any player, then they receive a star. In the same way, 
players were scored for bonus tiles, and producing an equality in a solution gave the player 
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another star. In this way, a player could receive a score of up to three stars per puzzle. 
Additionally, a special stamp is granted to the player if they have created a “novel solution”. 
That is, a solution that hasn’t yet been recorded for this particular puzzle.  
This scoring system was included in the first release of the game. Unfortunately it had some 
notable problems, not the least of which was that it was very easy to “game” the system, by 
taking advantage of the design in order to always get a high score. This frustrated those players 
who did not want to cheat, but at the same time were faced with an obvious way to collect three 
stars every single time without putting much effort in. It also made players’ contributions feel 
somewhat meaningless, knowing that other players could achieve three stars without carefully 
considering the puzzles. Furthermore, because it was so easy to “game” the system, the process 
risked transitioning from “not overly contributing" to Xylem’s science goals to being pretty much 
useless for this endeavor. The original design was intended to encourage the contribution of 
useful invariants, reward players for their efforts while playing the game, and encourage them to 
continue playing. However, it did none of these things, and so revisions to the scoring system 
became the main impetus for releasing a major Xylem update post-launch.  
Another Xylem scoring idea considered, but subsequently not implemented, was to build a 
restricted-inference capability into the game client that could check the relative strength of a 
player-submitted invariant against invariants established by the backend. This would provide 
immediate feedback of two types: that the player’s solution is subsumed by known invariants, or 
potentially unique (pending evaluation by the backend). Unique candidates would receive a high 
score. Defining and using such a structure is an example of a problem at the boundary between 
game development and verification research, which we hope to explore further in future projects. 

5.3 Peer review in Xylem 
In the process of upgrading Xylem during Phase One of the project, we introduced a peer review 
scheme, where players had the opportunity to rate the solutions previously provided by others. 
Figure 44 shows a sample screen from this part of the game. This technique provided us with a 
mechanism to crowd-source the relative quality of candidate invariants, as well as offer 
additional opportunities for players to earn more rewards.  

5.4 Insights on Binary Fission evaluation 
Earlier in this report, we addressed the problem of crowd-sourcing program preconditions, under 
the model that crowd sourcing offers an alternate, and viable method for addressing a difficult 
task. An existence proof in the form of the Binary Fission game has been provided, and we 
showed that crowd sourcing is effective by employing the game to discover program 
preconditions for 6 TCAS problems. The preconditions are non-trivial, reasonably general (as 
measured by data coverage on a test set), and human readable. They are also novel, at least with 
respect to the output of DTInv, which finds likely invariants that do not qualify as program 
preconditions. 
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Figure 44. Peer review screen from Xylem 

There are three sources of power behind Binary Fission: it employs an expressive representation, 
it relies on the crowd to conduct a thorough search, and the game imposes restrictions on that 
search that select for general solutions. In more detail, the representational power comes from 
Daikon, as Binary Fission inputs the highly structured predicates it produces. The game exploits 
crowd search by collecting and testing the large number of piecewise solutions that players 
contribute. The game influences the shape of the solution by limiting classifier depth, and by 
rewarding discovery of partial classifiers that isolate positive data, which has special utility for 
invariant construction. 
While Binary Fission employs a classification model, improving classification technology is not 
our goal. Our main point is to introduce crowd sourcing as a promising approach to invariant 
discovery. From this perspective, the key conjecture behind crowd sourcing is that many non-
expert individuals have the desire and ability to provide insight into highly technical problems 
when they are presented in a suitable form. This conjecture holds for Binary Fission. If it 
generalizes, related games will provide leverage on additional verification tasks, and crowd 
sourcing will offer an avenue for expanding the reach of verification technology. 

At this stage, we can only report the first results from a crowd-sourced approach to precondition 
discovery. As mentioned above, the key points are that crowd sourcing is feasible, effective, and 
promising as a practical avenue for expanding the reach of verification methods. That said, there 
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are several threats to the validity of these claims, as well as our more detailed results.
First, while crowd sourcing finds preconditions on TCAS, the approach may not generalize to 
more complex programs. In particular, TCAS is a short, straight line, arithmetic program that 
lacks pointers, loops, complex data structures, and a range of other language features that 
complicate the verification task. The counterpoint is that Binary Fission is agnostic to the 
structure of the underlying program, because it formulates precondition discovery as 
classification. The limits on its use come from the need for inputs common to classifiers; a base 
of relevant primitive predicates, and labeled data distinguishing bad program states from good. It 
is true that these inputs are hard to provide for more complex programs (especially the predicate 
base and assertion violating program states) as they are the product of deep analyses of program 
structure. However, Binary Fission is also agnostic as to the source of these data, which greatly 
increases its avenues for application. 
Second, our results on the novelty of the Binary Fission solution could be the product of our 
choice of DTInv as the comparator. This is quite plausible; the likely invariants produced by 
other machine learning methods might qualify as preconditions. However, our experience with 
Binary Fission has illuminated constraints that should be applied to the use of classifiers for this 
task; they should penalize solution size (which is common wisdom), employ a powerful 
predicate base to support human legibility of the end result, and reward identification of pure 
good nodes rather than focus on an entropic measure as the splitting criterion. 
A third, and broader concern, is that classification is viable but our use of crowd sourcing is 
superfluous, meaning that Binary Fission can be replaced by a suitable automated method. This 
argument is relevant at this stage in the development of Binary Fission, but it devolves to the 
underlying question, “What does the crowd bring to classification that is difficult to automate?”. 
In the case of FoldIt, players brought spatial intuition to the task of folding complex proteins, 
and obtained results never achieved through search over molecular conformations in 
combination with energy minimization methods.  
Classification tasks also have a natural framing as search, and by analogy, the crowd may intuit 
which predicates to employ en route to a more general solution. Binary Fission currently hides a 
bit too much information to support this type of intuition (in service of broadening the game's 
appeal), but advanced versions will provide more context about the underlying task. We 
currently rely on the crowd to explore unexpected places relative to the greedy search conducted 
by automated methods, and this approach has successfully produced program preconditions.  
Another consideration is that Binary Fission may be addressing a less salient crowd-sourcing 
problem. Rather than ask the crowd to combine primitive predicates, perhaps their skills would 
be better employed on the task of inventing the predicates themselves. As was discussed earlier, 
this was the intent of Xylem and the other Phase One CSFV games [30]. Predicate invention 
(including predicate abstraction from data) is a critical, but elusive, process currently performed
by people, as is the process of finding the ideal crowd-sourcing techniques themselves.   
In summary, Binary Fission was employed to analyze the implementation of an on-board aircraft 
collision detection and avoidance system. We found that the crowd can employ Binary Fission to 
prove program properties. They found function preconditions (statements about program 
variables associated with function inputs) that guarantee important safety properties hold on 
program exit, where those properties are encoded as postconditions. Binary Fission players also 
discovered concise, general, and human readable preconditions, which are also novel relative to 
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the complicated logical expressions often produced by other classifications systems. The players 
have no special expertise in formal methods or programming, and are not specifically aware they 
are solving verification tasks. 
Binary Fission demonstrates the feasibility of crowd-sourced invariant discover, and it illustrates 
the promise of crowd sourcing for other verification tasks. This suggests a pathway for 
expanding the reach and practical application of verification technology. 

5.5 Game Features for Science Tasks 
Binary Fission is both a game and a mechanism for program verification. As a result, the design 
has two roles that are sometimes in conflict. In particular, the game must be enjoyable to have an 
audience at all, which exerts a force towards simplifying or abstracting the science task in service 
of playability. However, as a verification technique, Binary Fission must also maintain fidelity to 
the science task to be useful at a practical level. This tension implies a small sweet spot in the 
game design.  
Previously, we have discussed the development of Binary Fission as a playable game. We now 
examine the evolution of features that impact its usability for crowd-sourced verification, and 
that shape the quality of the solutions they find as perceived by verification engineers. Usability 
features include the use of classification trees for crowd sourcing, and Binary Fission’s agnostic 
stance towards the source of predicates and good/bad program states. The key solution-shaping 
features are the reward function, and depth limit on the size of the solution tree.  
The classification model employed by Binary Fission provides several advantages for facilitating 
crowd-sourced verification; it captures several types of verification problems, it expands the set 
of people who can perform the task, and it provides a natural method of aggregating results 
across the experience of the crowd.  
In more detail, several forms of the invariant discovery problem easily map onto the task of 
distinguishing good states from bad. As mentioned earlier, if the target is loop invariants, any 
state produced by the loop at a given iteration is good, and any state that could never be 
produced by the loop at that iteration is bad. If the task is finding program preconditions, good 
states are program inputs that satisfy postconditions on execution, while bad states violate those 
postconditions. In both cases, the logical function expressed by the classification tree provides 
encoded candidate invariants.  

Once players produce a classification tree, it is easy to read out logical expressions that 
characterize good states and bad states, and those expressions constitute likely invariants. In 
Binary Fission, the classification trees are typically partial; some leaf nodes only contain good 
states, some only contain bad states, while others contain a mixture. The conjunction of 
predicates that links the root to a pure good node describes a set of states that satisfy program 
assertions, and expresses a likely invariant. A single player solution can contain several such 
paths. 
It is worth noting that we only understood how to form a consensus invariant after Binary 
Fission had been developed and deployed. Our original thought was that we could use the pure 
bad nodes and the impure nodes in the classification tree. It turns out that the impure nodes are of 
no value for finding program invariants except as input to further search/classification. However, 
the pure bad nodes can offer value; the negation of a path to any pure bad node can be AND-ed 
into the description of any pure good node, and the result tested via the model checker. The 
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additional restriction may turn a failed candidate into a valid precondition (or make a successful 
candidate less general).  

Finally, as noted earlier, the classification model in Binary Fission is agnostic as to the source of 
the data, as well as the source of the primitive predicates used to separate that data. This 
introduces a broader benefit for the game’s usefulness as a scientific tool, because Binary Fission 
can be deployed as a human-driven aggregator to a wide variety of automated tools.  

5.6 Challenges Involving Research Ethics Oversight 
The fundamental public relations and marketing strategy for the overall CSFV program was to 
unify multiple verification games into a single Verigames identity. This provided valuable 
promotional leverage for all the game-development teams, and it centralized the player 
recruitment and signup process. The core Verigames coordination was handled by a separately-
contracted team led by TopCoder (now part of Aperio Inc). This simplified things from an 
individual player's point of view, because they only needed to enroll once to participate in the 
complete program. However, a key impact of this approach was that the process for obtaining 
and maintaining Institutional Review Board (IRB) approvals differed substantially from the 
typical standard procedures used for many other behavioral programs involving human 
participants.  
The top level IRB application strategy for CSFV was to assemble a single package covering all 
teams and institutions, and obtain central approval for the overall program. However, this 
resulted in the need for specific local IRB approvals at any institution that was involved with 
collecting and analyzing software verification data. For CHEKOFV, this strategy posed problems 
at both SRI and UCSC, because our team members were not involved with player recruitment 
and were not collecting or accessing any personally-identifiable information (PII). Thus, 
representatives of both the local IRBs considered the project to be exempt from their purview. 
However, these initial decisions were not considered as providing sufficient ethical oversight to 
justify obtaining central approval for the overall CSFV program.  

In the course of managing this approval process, it was noted that players under 18 years old 
might be recruited as participants. The result was that additional consent forms and other 
document revisions, including a specific Benefits to Minors statement (see Figure 45), were 
needed for inclusion in an updated central application package. Because there was now a 
possibility that minor participants might be involved in our work, the local IRBs at both of our 
institutions we able to confirm that the research project no longer qualified as exempt from their 
oversight, and they each generated an expedited approval for CHEKOFV instead. These decisions 
in turn provided adequate justification for central approval for the overall program.  

As it subsequently transpired, there were other administrative and logistical challenges involved 
with recruiting minors as players, so that part of the general CSFV program activity was later 
dropped in any case. Further information on undertaking online-centric behavioral research in 
the future may be found in Section 6: Recommendations of this report.  
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Figure 45. Xylem statement on Benefits to Minors 
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6. RECOMMENDATIONS
6.1 Citizen Science and Binary Fission 
The main goal of our citizen science work has been to introduce crowd sourcing as a promising 
approach to invariant discovery. From this perspective, the entire CHEKOFV game infrastructure, 
in particular the underpinnings of Binary Fission, is an exploration of a simple conjecture, i.e., 
that many non-expert individuals have the desire and ability to provide insight into verification 
tasks when they are presented in a suitable form. From our initial experience, this conjecture 
appears to hold, especially because Binary Fission was designed as an aggregator/consolidator 
for candidate invariants for other games, robot solvers, or automated verification tools. If it 
generalizes, the related games will provide leverage on additional verification tasks, and crowd 
sourcing will offer an avenue for expanding the reach of verification technology. 
As a result, the work of CHEKOFV can be expanded in multiple directions. One obvious direction 
is to extend Binary Fission by addressing known flaws in existing source code. For example, we 
could make use of the pure bad nodes in the classification tree to improve the formal invariant 
test. We could introduce additional social collaboration features. More broadly, we could address 
the criticism that BF does not engage the crowd’s intuitions about classification tasks by 
exposing more insights on the program state, and by developing game mechanics for visualizing 
and parameterizing the application of predicates to the data space. The goal here would be to let 
players more usefully employ human spatial intuition. 
A second path forward would be to build (literally) an industrial strength version of Binary 
Fission. This successor game would input client code, and interface with a variety of automated 
techniques that provide predicates, supply good and bad program states, and test crowd sourced 
candidate invariants for their status as actual invariants against the client’s program. This game 
would require surmounting or finessing significant technical challenges, as the current generation 
of automated techniques carry idiosyncratic restrictions on the size and content of the program 
under analysis, on the types of conclusions they can draw, and on the computational efficiency of 
deriving those results. As a consequence, Binary Fission II would probably accept a class of 
programs far larger than the algebraic functions analyzed by the current game, but far less 
general than the arbitrary programs that industrial clients might hope to analyze.  
A third avenue to explore would be to produce a suite of games that collectively span a 
verification task. For example, we could let players define primitive predicates in a Xylem-like 
environment, and then compose them via Binary Fission to form more complex invariants.  

A logical extension of this idea is to build a suite of crowd-sourced games that address each hard 
part of data driven invariant discovery; predicate generation (a la Xylem), the creation of good 
and (especially) bad program states, composition of likely invariants (as in Binary Fission), 
evaluating the strength of likely invariants (with feedback into the games for predicate 
generation), and testing likely invariants as program invariants, to name a few. Our intuition on 
this last task is that data driven predicate generation games could be employed to augment an 
automated model checker by proposing predicates that facilitate its derivation when it encounters 
difficulties. 

As a whole, a robust development of crowd sourced verification games has the potential to 
greatly expand the application and utility of verification technology. 
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6.2 Future Directions for Verification using Value Analysis 
The comprehensive investigation of value analysis within the CHEKOFV project, particularly in 
the context of Frama-C, resulted in the development of several new software tools that helped to 
address several of the shortcomings described previously in Section 4.3.  We believe that the 
related lessons learned offer a number of valuable directional pointers for future research in the 
formal verification field.  

6.2.1 Non-termination analysis. To better understand the situation where value analysis could 
not terminate, we developed several new tools during the course of the project.  
Recursive component analysis 
The first tool to be developed was used to finds the recursive functions in a program by 
analyzing the strongly connected components in the syntactic call graph, together with the entry 
points of this connected component. This tool cannot prove the absence of recursion in a 
program, due to function pointers (as happens in BIND); however it finds all the syntactically 
recursive calls (that do not go through function pointers), which is the most common case. 
Moreover, as it gives the entry point to these recursive components, it tells which function to 
stub to replace the set of function.  

The development of this tool raised the more general question of how to partition large code 
bases automatically to make them amenable for automatic analysis. Finding suitable a 
partitioning of BIND for the analysis with Frama-C turned out to be a labor-intensive step 
because the verification engineer had to develop an in-depth understanding of the application 
logic and data structures used in BIND . E.g., BIND reads configuration data from a file into a 
red-black tree which needs to be stubbed manually because neither configuration data nor the 
data structure can be handled efficiently by Frama-C.  
Extending the recursive component analysis to identify and stub more parts of the input program 
that are known to cause problems with Frama-C would significantly reduce the manual effort 
required during the verification. 

Profiling 
We have also instrumented the analyzer so that it reports where it spends time analyzing C 
functions. For every function, it reports the number of times that it was called, and the total time 
analyzing the code of that function. It also reports the time spent for each function in each level 
in each call stack, as well as the current call stack.  
Using this report, one can replace the functions that takes too long to be analyzed, and are called 
too often, by stubs that takes a shorter time to analyze. This tool is now integrated in Frama-C, 
and has proven invaluable in many situations to improve the analysis time. We believe that other 
analysis tools could also benefit from this form of internal performance monitoring.  
De-recursifier 

We have developed a new way to handle recursive calls in Value, that requires no change to the 
memory model. The idea is that when a function is called, which was already in the call stack, 
the code of the function is dynamically duplicated. This handles the fact that local variables are 
considered as if they were global by value; by the code duplication, we have two instance of the 
variable. Of course this technique only works in the case where the recursion is of finite height, 
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and Value is precise enough to find out that this is the case; but in some cases this spares the 
need to stub a recursive function.  

Program transformations such as this increase the degree of automation, however, they alter the 
structure of the program and thus make it harder to track findings back to the original program. 
In the future, we plan to implement this step and similar steps as refactoring to improve 
traceability. This is an interesting direction because, unlike normal refactoring, the refactoring in 
the context of verification does not necessarily have to preserve the semantics of the original 
program (e.g., it might over-approximate).  

Memexec cache 
Because Value analyzes function calls by (semantically) in-lining them, analyzing a function call 
can take a lot of time. But many times, different function calls take the same arguments in 
memory; for instance function calls in a loop vary only slightly in their execution, and they may 
call sub-functions with the exact same arguments.  
For this reason, Value has a "cache" which associates to each function, to each set of values of 
the part of memory read by the function, the part of memory that is assigned by the function. 
When the function is called in the same conditions, the output can be reused. This cache is 
crucial for execution time: for instance, its use in Paparazzi allowed some analyses to be 
executed for several seconds, instead of several minutes.  

However, this cache was incompatible with the use of dynamic allocation: when the cache was 
hit, it behaved as if the memory allocations returned were re-using an old memory region, 
instead of a fresh one. During the course of the project, this memexec cache was enhanced to 
properly (soundly) handle dynamic allocations.  

In the future, we plan to combine value analysis with shape analysis summaries like the ones 
computed by Facebook’s Infer tool to improve the effectiveness of memexec cache.  

6.2.2 Other enhancements. We developed modifications to our custom build tool that 
dynamically record the set of arguments used when compiling BIND, and enable it to be used by 
the preprocessing and parsing phase of Frama-C. We also implemented a preprocessing plugin 
that manages calls to variadic functions (i.e. those which accept a variable number of arguments) 
by simplify them into regular function calls, and generates ACSL contracts along the way. 
Others miscellaneous verification features developed for the project included the introduction of 
additional warnings that allows to better track when loss of precision occurs, as well as many 
extensions to our stub of the GNU C library. 

6.2.3 New analyzer. The above extensions allows better understanding of what does not work, 
and provide workarounds in some cases, but the main causes we have identified (finite memory 
model, absence of relation and intra-procedural trace partitioning) remain. Using our experience 
with Value and the lessons learned from analysis of BIND, we have begun developing an 
analysis framework that could handle these issues. In particular, the memory model is parametric, 
so that it can be changed to handle infinite memory, or to do a pessimistic modular intra-
procedural analysis (which allows analyzing recursive calls).  
6.3 New Framework for Research Ethics 
As noted in Section 5, the process for obtaining and maintaining Institutional Review Board 
(IRB) approvals for the overall CSFV program differed substantially from the typical procedures 
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used in many other behavioral programs involving human participants. In particular, the IRB 
application strategy for CSFV was to assemble a single package covering all teams and 
institutions, and obtain central approval for the overall program.  
Under the procedures that were prevailing at the time, this necessitated first obtaining local 
approvals at each participating institution, which can rapidly become a coordination headache. 
IRB guidelines and regulations are primarily designed for classical human research laboratory 
work in fields like medicine and psychology; however, they have limited practical relevance to 
modern human behavior studies, such as CSFV, that involve highly-networked information and 
communications technology systems.  
Nowadays, numerous distributed research consortiums are working in these contexts, not just 
with crowd-sourcing activities, social networks and popular gaming worlds, but also with online 
educational environments, cybersecurity applications, and surveillance systems. The current 
impracticalities with research ethics oversight are exacerbated by the pervasive need to undertake 
comprehensive, transnational experimental projects, where much of the human data collection 
and analysis is undertaken remotely across varied, and often incompatible, legal regimes and 
social norms. In such conditions, it is inevitable that individual local IRBs will maintain differing 
opinions about their purview for these forms of, typically low-risk, studies. 
Newly proposed regulatory changes may assist with addressing some of these practicality 
concerns. Revised policies and regulations have been put forward for comment with the 
publication of a Notice of Proposed Rulemaking (NPRM) in the U.S. Federal Register [31]. 

Although these updates may contribute somewhat to improving the situation, further 
coordinating guidelines and support is required for overseeing human participant research using 
online systems and other cyber-environments across multiple jurisdictions. In essence, an 
international ethics observance organization is needed for this purpose. This could for example 
be a consortium of non-profit organizations operating in several domains, which would ensure 
smooth transnational processing of approvals. It seems appropriate that such a consortium would 
need to have the backing of a recognized international entity such as UNESCO. 
6.4 Educational Games: Project Fibonacci 
6.4.1 Background. Project Fibonacci is a proposed initiative for adapting Xylem: The Code of 
Plants to a game for math anxiety reduction and algebra learning among middle school students. 
Math anxiety has been the subject of considerable scholarship for several decades [32][33]. For 
many reasons, middle school becomes a critical moment for a student’s relationship with math: 
because there is a jump in math skills required from elementary to middle school, because math 
in middle school becomes very abstract, or because some middle schoolers are not 
developmentally ready for the abstraction. 
Students at this juncture who disconnect from math and decide that they are just not good at it, 
that its not for them, can develop life-long math anxiety which not only affects their future 
schooling but can cause them problems during their adult years as well. It can have profound 
effects on their self-esteem and self-image and cause them to avoid activities that they may be 
otherwise interested in (running their own business, programming, and science). Even paying a 
check at a restaurant or looking over bills can cause embarrassment and anxiety symptoms. 
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6.4.2 Approach. Project Fibonacci aims to create an intervention in the mathematical lives of 
middle school students, shoring up their skill and confidence in math so that they have an 
opportunity to avoid the pain of math anxiety and build a positive relationship with it. This 
intervention takes the form of a game that teaches and supports math skills while being 
intrinsically motivating. 
Fibonacci can be adapted from the existing math-puzzle game Xylem: The Code of Plants, if 
several changes are used to create an age-appropriate game that meets the science objectives: 

• Replace procedurally generated puzzles with hand-crafted puzzles, with attention given
to creating an appropriate difficulty curve.

• Use a reward structure to reinforce players’ successes on a personal one-on-one level.
• Add new theme and narrative framing that will appeal to the target audience, while

making the math more concrete by tying it to real-world phenomena.

At the same time, using the Xylem engine gives us several advantages over creating a game from 
scratch:  Xylem includes a sophisticated equation builder, which allows players build equations 
from component parts.  
The core gameplay of Xylem involves inductive reasoning, and is one of very few  games to do 
so. This encourages players to look at mathematics from a different angle than they are 
accustomed to.  The core gameplay of Xylem involves cognitive reasoning, pattern recognition 
and mathematical thinking. It is not simply math drills but rather puzzles to figure out, thereby 
supporting the philosophy of the new Common Core Standards in mathematics.  

Because we are no longer tasked with deriving puzzles from actual code in a piece of existing 
software, we can hand-craft the puzzles presented to players and in so doing handcraft the 
difficulty curve of the game. We are able to teach concepts in a logical order and to allow players 
to gradually expand their skill set at a comfortable pace. The game will be designed such that 
players are building on their own improving skills and experiences as they progress. 
6.4.3 Related Work. While the space of math games is well populated, most attention to 
gameplay and aesthetics of the game experience is spent on games for elementary school 
students. Games exist for middle school to adult populations, but these games are often little 
more than math drills. Arguably the best math game for any age group, DragonBox teaches 
algebra skills. While Project Fibonacci will teach math skills to middle-school aged students, its 
central objective is to foster greater comfort in working with numbers and the ability to think 
mathematically. We also wish to help students make a smoother transition from concrete to 
symbolic thinking in mathematics. 
Wigfield and Meece [32] identified affective components in math anxiety among 6th to 12th-
graders, such as nervousness, fear and discomfort, as well as cognitive components expressed 
primarily as worry about performance. They recommend that both components should be 
addressed by efforts to reduce math anxiety: the cognitive through confidence-building and the 
affective through “training to reduce fear and dread” of mathematics. The design of Project 
Fibonacci addresses both concerns by using inductive reasoning, a carefully controlled difficulty 
curve, hand-crafted puzzles, and the ability for players to work together on puzzles. By 
representing core math concepts as puzzles, the game offers youngsters a different way of 
looking at math. 
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Design Concept: Code Breaker

Jason Rohrer

January 16, 2012

1 Introduction
We’ve already narrowed our focus down to crowd-sourced discovery of loop invariants. Even
within this relatively limited realm, it seems that reasoning about pointers and arbitrary data struc-
tures, without representing those structures explicitly, is beyond the reach of a casual-friendly,
sufficiently-abstract game design. During our meeting, I watched marble-and-pipe machines sprout
dizzying complexity as they tried to capture the behavior of even a simple linked list.

In a last-ditch effort to produce a design that doesn’t explicitly represent program structure, I’m
further narrowing the focus: loops for which the full, relevant state space—for a given execution
instance of the loop—can be represented by a finite set of numerical values.

2 Thematic Overview
A newly constructed radio telescope has been receiving perplexing data sequences from various
points in deep space. At first, these sequences were dismissed as the output of quasars, but over
time, that explanation has become less and less satisfying. First of all, the locations of these sources
do not match the positions of any previously known quasars—not surprising in and of itself, given
that this scope is more sensitive than previous devices. More shocking is the data itself: when
interpreted numerically, it seems that clear, logical patterns emerge. We are hesitant to use the
“I” word here, but we almost cannot help seeing some kind of intelligence in these patterns. Not
language, as we normally think of it, but perhaps a language of numerical relationships? We don’t
know for sure, and that’s why we need your help.

We’ve got thousands of sources to analyze. Furthermore, from each source, we have a virtually
unlimited supply of sample messages of varying length. Each message is an example of the pattern
being output by a given source. Your job is to detect and describe a pattern in each source’s
messages. If your pattern misses something, our database will automatically provide you with
messages that break your proposed pattern—more information with which you can revise your
pattern.

But just because you devise a pattern that covers all messages from a given source doesn’t
mean that you’ve nailed it. Maybe your proposed pattern isn’t as specific as it could be. You’ll

1
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be collaborating with others from around the world who are working on the same task. Together,
you’ll hone the pattern for each source down into its tightest, most well-tuned form.

3 Design Description

3.1 Related Design
The enormously popular casual puzzle game Square Logic gives players a grid of logical and
mathematical constraints (for example, “these cells must all be odd,” “these cells must sum to 6,”
or “the product of these cells must be 8”) and then asks the player to fill the grid with numbers,
Sudoku-style, so that no number occurs more than once in each row or column:

http://www.squarelogicgame.com/

Code Breaker is an inversion of Square Logic in that the player is given a grid of numbers and
asked to find the constraints.

3.2 Extracting Messages from Running Programs
Completely ignoring program structure, we can look at the relevant program state space (data that
is actually touched by the loop) as a set of anonymous numerical values. At the end of a given loop
iteration, that numerical state can be represented as a line of numbers, like this:

0 10 10 5 12 3

Lines from multiple iterations can be stacked, in order, to form a complete, multi-line message
like this:

0 10 10 5 12 3
1 10 10 5 12 3
2 12 10 5 12 3

Finally, columns in a given message can be assigned anonymous labels like this:

A B C D E F
0 10 10 5 12 3
1 10 10 5 12 3
2 12 10 5 12 3

3.3 Player Goal
Given a multi-line messages like the one shown above, the player attempts to define constraints
that describe each line in the message. Looking at the given message, the player might propose the
following constraint:

B ≤ E

2
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3.4 Goal Iteration
A player-proposed constraint might be satisfied by the current messages or even by all sample
messages that the player has seen so far. However, there might be other messages from the same
source that break the proposed constraint. The player is presented with such a counter-example:

A B C D E F
0 10 10 5 2 3
1 10 10 5 2 3
2 10 10 5 2 3

Clearly, B ≤ E doesn’t hold for this message. The player might think that B ≤ C could work,
but that would be violated by the previously-seen message. Stumped, the player requests another
example message:

A B C D E F
0 10 10 15 2 3
1 15 10 15 2 3
2 15 10 15 2 3

Now it becomes clear that B takes on the maximum value of C, D, and E, so the player might
propose:

B ≤ max(C, D, E)

And this, it turns out, is satisfied by all messages with that line length. A longer message from
the same source is presented to the player as a new counter-example:

A B C D E F G
0 10 10 15 2 16 4
1 15 10 15 2 16 4
2 15 10 15 2 16 4
3 16 10 15 2 16 4

While the same max relationship is present here, it’s clear that a variable number of columns
must be accounted for. The player tries:

B ≤ max(colspan(C, A))

Where the colspan operator extracts the set of columns starting at C and moving A columns to the
right.

And, it turns out that all messages from this source satisfy that constraint. The player submits
her solution and moves on to tackle message from a different source.

3
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3.5 Meager Solutions
Of course, the rather tight constraint discovered by the previous player required quite a bit of
insight and effort. A more loose constraint might be proposed by a less industrious player:

A ≤ lastColumn

Where the lastColumn operator picks the value of the last column in a given line. Yes, all messages
satisfy the constraint, and in fact, this particular constraint was missed by the previous player.
These two constraints could be combined into the following set, which is stronger than either in
isolation:

B ≤ max(colspan(C, A))

A ≤ lastColumn
Thus, players can build on each other’s constraints to find even better constraints for the mes-

sages from a given source.

3.6 Underlying Code
The above “messages” were actually the state space extracted from the end of each loop iteration
in the following function:

arrayMax( a, n )
m = INT_MIN

for( i=0; i<n; i++ )
if( a[i] > m )

m = a[i]

return m

with the following mapping:
Code Variable: Message Column:

i A
m B
a C · · · prevCol( lastCol )
n lastCol

The key insight in this kind of mapping is that though arrayMax can handle input of arbitrary
length, a given instance of its invocation always involves a finite state space. Furthermore, use-
ful pattern information can be gleaned, as demonstrated above, from extremely small invocation
examples. Yes, though the example function might process thousand-variable state spaces in prac-
tice, such examples don’t provide more information about constraint patterns than much smaller
examples. Loops behave inductively, after all, so we don’t need to worry about how our system
scales to huge state spaces.

4
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4 Presentation
The enormous popularity of Sudoku, Drop7, and Square Logic suggests that casual players don’t
have trouble with logical or mathematical reasoning. However, there’s no sense in overloading
the presentation of Code Breaker with unfamiliar symbols (even the difference between < and ≤
might not be clear to non-programmers).

Instead of asking the player to type in constraint formulas, we can ask them to construct a
pattern machine that matches lines from messages. The anonymous column names (A, B, C, etc.)
can be disks for dragging and dropping. Operators (+, −, ×, ÷) can be blocks that connect disks
together. Relationship operators, such as the aforementioned < and ≤, can become blocks with
explanatory icons (sloping right triangles).

Aggregation operations, like min and max, can become containers where other blocks can be
dropped inside. The colspan operator can be a block with two slots in it (one slot for the first
column name, and the second slot for an expression describing the column extent).

Players can then run their pattern machine on a message, line by line, to see where the message
breaks their machine.

5
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ZKLOH��FRQGLWLRQ��^
83'$7(

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

&RQFUHWH�&DVH
ILOH����������OLE�H[SRUW�VDPSOHV�VDPSOH�XSGDWH�F
IXQFWLRQ��PDLQ

ZKLOH���EXI� �,6&B/,67B+($'�XVHGEXIIHUV���� �18//��^

����,6&B/,67B81/,1.�XVHGEXIIHUV��EXI��OLQN��

����LVFBEXIIHUBIUHH�	EXI��

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

*HQHUDO�&DVH

ZKLOH��FRQGLWLRQ��^
83'$7(

� ,11(5B/223
83'$7(

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

&RQFUHWH�&DVH
ILOH����������OLE�H[SRUW�VDPSOHV�QVSUREH�F
IXQFWLRQ��UHVHWBSUREH

ZKLOH���SQV� �,6&B/,67B+($'�WUDQV�!QVOLVW���� �18//��^

���� ,6&B/,67B81/,1.�WUDQV�!QVOLVW��SQV��OLQN��

���� ZKLOH���VHUYHU� �,6&B/,67B+($'�SQV�!VHUYHUV���� �18//��^

�������� ,6&B/,67B81/,1.�SQV�!VHUYHUV��VHUYHU��OLQN��

�������� LVFBPHPBSXW�PFW[��VHUYHU��VL]HRI�VHUYHU���

���� `

���� LVFBPHPBSXW�PFW[��SQV��VL]HRI�SQV���

����`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

*HQHUDO�&DVH

ZKLOH��FRQGLWLRQ��^
83'$7(

� &21752/B%5($.
($5/<B(;,7
,11(5B/223

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

&RQFUHWH�&DVH
ILOH����������OLE�LVF�EDVH���F
IXQFWLRQ��EDVH��BWREXIIHU

ZKLOH���FW[�VHHQBHQG�		��FW[�OHQJWK�� �����^

����XQVLJQHG�LQW�L�

����LI��OHQJWK�!����^�HRO� �,6&B)$/6(��`��HOVH�^�HRO� �,6&B758(��`

����5(7(55�LVFBOH[BJHWPDVWHUWRNHQ�OH[HU��	WRNHQ�

����������������������LVFBWRNHQW\SHBVWULQJ��HRO���

����LI��WRNHQ�W\SH�� �LVFBWRNHQW\SHBVWULQJ��^�EUHDN��`

����WU� �	WRNHQ�YDOXH�DVBWH[WUHJLRQ�

����IRU��L� ����L���WU�!OHQJWK��L���

��������5(7(55�EDVH��BGHFRGHBFKDU�	FW[��WU�!EDVH>L@���

`
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7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

*HQHUDO�&DVH

ZKLOH��FRQGLWLRQ��^
($5/<B(;,7

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��:��

&RQFUHWH�&DVH
ILOH����������OLE�LVF�LQFOXGH�LVF�UDGL[�K
IXQFWLRQ��KDVBZKLWHVSDFH

ZKLOH���F� �VWU����� �
?�
��^

����LI��F�  �
�
�__�F�  �
?W
�__�F�  �
?Q
�

��������UHWXUQ��,6&B758(��

`

:KDW�LV�WKH�UDQJH�RI�GDWD�W\SHV�DQG�
VWUXFWV�XVHG�LQ�WKHVH�ORRSV"�

:KDW�LV�WKH�UDQJH�RI�GDWD�W\SHV�DQG�
VWUXFWV�XVHG�LQ�WKHVH�ORRSV"�

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)25�

:H
YH�LGHQWLILHG���FODVVHV�RI�)RU�ORRSV�LQ�%LQG�

&ODVV 3DWWHUQ &RXQW

)� �8��&%� ��

)� �8��((� �

)� �8� ��

)� ��$���,11(5B/223��$�� �

)� �8��&1��&%��8��&%� �

)� �8��((��&1��8� �

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

*HQHUDO�&DVH

IRU��FRQGLWLRQ��^
����� 83'$7(
����� &21752/B%5($.

`
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7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

&RQFUHWH�&DVH
ILOH����������OLE�ELQG��FKHFN�F
IXQFWLRQ��FKHFNBRUGHU

IRU��HOHPHQW� �FIJBOLVWBILUVW�REM��

���������HOHPHQW�� � 18//�

���������HOHPHQW� �FIJBOLVWBQH[W�HOHPHQW��

����^

��������WUHVXOW� �FKHFNBRUGHUHQW� FIJBOLVWHOWBYDOXH �HOHPHQW���ORJFW[��

��������LI��WUHVXOW�� �,6&B5B68&&(66�

������������UHVXOW� �WUHVXOW�

����`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

*HQHUDO�&DVH

IRU��FRQGLWLRQ��^
����� 83'$7(
����� ($5/<B(;,7

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

&RQFUHWH�&DVH
ILOH����������OLE�ELQG��FKHFN�F
IXQFWLRQ��ELQG�BFKHFNBNH\

IRU��L� ����DOJRULWKPV>L@�QDPH�� � 18//��L����^

��������OHQ� �VWUOHQ�DOJRULWKPV>L@ �QDPH��

��������LI��VWUQFDVHFPS�DOJRULWKPV>L@�QDPH��DOJRULWKP��OHQ��  ���		

�������������DOJRULWKP>OHQ@�  �
?�
�__

��������������DOJRULWKPV>L@ �VL]H�� ���		�DOJRULWKP>OHQ@�  �
�
���

������������EUHDN�

����`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

*HQHUDO�&DVH

IRU��FRQGLWLRQ��^
����� 83'$7(

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

&RQFUHWH�&DVH
ILOH����������OLE�GQV�MRXUQDO�F
IXQFWLRQ��MRXUQDOBRSHQ

IRU��L� ����L���M�!KHDGHU�LQGH[BVL]H��L����^

����M�!LQGH[>L@�VHULDO� �GHFRGHBXLQW���S��

����S�� ���

����M�!LQGH[>L@�RIIVHW� �GHFRGHBXLQW���S��

����S�� ���

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

*HQHUDO�&DVH

IRU��FRQGLWLRQ��^
��������

����� ,11(5B/223
����

`
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7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

&RQFUHWH�&DVH
ILOH����������OLE�OZUHV�JHWDGGULQIR�F
IXQFWLRQ��OZUHVBVWUVHSW

IRU��V� �VWULQJ��V�� �
?�
��V����^

����VF� �V�

����IRU��G� �GHOLP���GF� �G��� �
?�
��G���

��������LI��VF�  �GF��^

�����������V��� �
?�
�

�����������VWULQJS� �V�

�����������UHWXUQ��VWULQJ��

����`

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

*HQHUDO�&DVH

IRU��FRQGLWLRQ��^
����83'$7(

����� &217,18(
&21752/B%5($.
83'$7(
&21752/B%5($.

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

&RQFUHWH�&DVH
ILOH����������OLE�ELQG��FKHFN�F
IXQFWLRQ��FKHFNBGXDOBVWDFN

IRU��HOHPHQW� �FIJBOLVWBILUVW�REM��

�����HOHPHQW�� �18//�

�����HOHPHQW� �FIJBOLVWBQH[W�HOHPHQW���^

����YDOXH� �FIJBOLVWHOWBYDOXH�HOHPHQW��

����LI��FIJBREMBLVVRFNDGGU�YDOXH��

��������FRQWLQXH�

����REM� �FIJBWXSOHBJHW�YDOXH���QDPH���

����VWU� �FIJBREMBDVVWULQJ�REM��

����LVFBEXIIHUBLQLW�	EXIIHU��VWU��VWUOHQ�VWU���

����LVFBEXIIHUBDGG�	EXIIHU��VWUOHQ�VWU���

����GQVBIL[HGQDPHBLQLW�	IL[HG��

����QDPH� �GQVBIL[HGQDPHBQDPH�	IL[HG��

����WUHVXOW� �GQVBQDPHBIURPWH[W�QDPH��

����������������	EXIIHU��GQVBURRWQDPH�

�����������������������18//��

LI��WUHVXOW�� �,6&B5B68&&(66��^
��������FIJBREMBORJ�REM��ORJFW[��,6&B/2*B(5525�
�����������������EDG�QDPH�
�V
���VWU��
��������UHVXOW� �,6&B5B)$,/85(�
����`
����REM� �FIJBWXSOHBJHW�YDOXH���SRUW���
����LI��FIJBREMBLVXLQW���REM���^
��������LVFBXLQW��BW�YDO� �FIJBREMBDVXLQW���REM��
��������LI��YDO�!�,6&B8,17��B0$;��^
������������FIJBREMBORJ�REM��ORJFW[��,6&B/2*B(5525�
���������������������SRUW�
�X
�RXW�RI�UDQJH���YDO��
������������UHVXOW� �,6&B5B)$,/85(�
��������`
����`
`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

*HQHUDO�&DVH

IRU��FRQGLWLRQ��^
����83'$7(

����� ($5/<B(;,7
&217,18(
83'$7(

`

7KH�UDQJH�RI�ORRSV�LQ�%,1'��)��

&RQFUHWH�&DVH
ILOH����������OLE�LVF�EDVH���F
IXQFWLRQ��EDVH��BGHFRGHVWULQJ

IRU������^

����LQW�F� �FVWU���

����LI��F�  �
?�
�

��������EUHDN�

����LI��F�  �
�
�__�F�  �
?W
�__�F�  �
?Q
�__�F  �
?U
�

��������FRQWLQXH�

����5(7(55�EDVH��BGHFRGHBFKDU�	FW[��F���

`

:KDW�LV�WKH�UDQJH�RI�GDWD�W\SHV�DQG�
VWUXFWV�XVHG�LQ�WKHVH�ORRSV"�
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:KDW�LV�WKH�UDQJH�RI�GDWD�W\SHV�DQG�
VWUXFWV�XVHG�LQ�WKHVH�ORRSV"� $�IHZ�VWUXFW�GHILQLWLRQV

FIJBREM
ILOH���������OLE�LVFFIJ�LQFOXGH�LVFFIJ�JUDPPDU�K
VWUXFW�FIJBREM�^�FRQVW�FIJBW\SHBW�W\SH�

��������XQLRQ�^�LVFBXLQW��BW����������XLQW���

����������������LVFBXLQW��BW����������XLQW���

����������������LVFBWH[WUHJLRQBW�VWULQJ������QXOO�WHUPLQDWHG��WRR��

����������������LVFBERROHDQBW���������ERROHDQ�

����������������FIJBPDSBW�������������PDS�

����������������FIJBOLVWBW������������OLVW�

����������������FIJBREMBW�����������WXSOH�

����������������LVFBVRFNDGGUBW��������VRFNDGGU�

����������������FIJBQHWSUHIL[BW�QHWSUHIL[�

��������`���������������YDOXH�

��������LVFBUHIFRXQWBW��UHIHUHQFHV����������UHIHUHQFH�FRXQWHU��

��������FRQVW�FKDU�����ILOH�

��������XQVLJQHG�LQW����OLQH� �

`�

$�IHZ�VWUXFW�GHILQLWLRQV

LVFBWH[WUHJLRQ
ILOH���OLE�LVF�LQFOXGH�LVF�UHJLRQ�K

VWUXFW�LVFBWH[WUHJLRQ�^

��������FKDU���������������EDVH�

��������XQVLJQHG�LQW��������OHQJWK�

`�

$�IHZ�VWUXFW�GHILQLWLRQV

LVFBPHP
ILOH���OLE�LVF�LQFOXGH�LVF�PHP�K

VWUXFW�LVFBPHP�^

��������XQVLJQHG�LQW������������LPSPDJLF�

��������XQVLJQHG�LQW������������PDJLF�

��������LVFBPHPPHWKRGVBW��������PHWKRGV�

`�

$�IHZ�VWUXFW�GHILQLWLRQV

LVFBEXIIHU
ILOH���OLE�LVF�LQFOXGH�LVF�EXIIHU�K

VWUXFW�LVFBEXIIHU�^

��������XQVLJQHG�LQW����������������PDJLF�

��������YRLG�����������������������EDVH�

��������XQVLJQHG�LQW����������������OHQJWK�

��������XQVLJQHG�LQW����������������XVHG�

��������XQVLJQHG�LQW����������������FXUUHQW�

��������XQVLJQHG�LQW����������������DFWLYH�

��������,6&B/,1.�LVFBEXIIHUBW�������OLQN�

��������LVFBPHPBW�������������������PFW[�

`�

&RPPHQWV�VXPPDU\

Ɣ 7KH�WRWDO�QXPEHU�RI�ORRSV�LQ�%,1'�OLE�LV������
ż :KLOH�ORRSV�DUH�����
ż )RU�ORRSV�DUH�����

Ɣ :H
YH�LGHQWLILHG���FODVVHV�RI�:KLOH�ORRSV�DQG���
FODVVHV�RI�)RU�ORRSV�EDVHG�RQ�WKH�XVH�RI�D�VHW�
RI�PDUNHUV�

Ɣ 0RUH�FOXVWHUV�FDQ�EH�IRXQG�E\�XVLQJ�VKDUHG�
GDWD�W\SHV��

Ɣ 7KH�PRVW�SRSXODU�VWUXFWV�DFURVV�DOO�WKH�:KLOH�
ORRS�FODVVHV�LQFOXGH�
ż LVFBUHJLRQ
ż LVFBPHP
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&RPPHQWV�VXPPDU\

Ɣ 7KH�PRVW�SRSXODU�VWUXFWV�DFURVV�DOO�WKH�)RU�ORRS�
FODVVHV�LQFOXGH�
ż FIJBREM
ż LVFBORJ
ż GQVBDFDFKH

Ɣ 7KH�PRVW�SRSXODU�GDWD�W\SHV��LQFOXGLQJ�18//�
YDOXHV��DFURVV�WKH�:KLOH�ORRS�FODVVHV�LQFOXGH�
ż LQW
ż LVFBERROHDQBW
ż XQVLJQHG�LQW
ż 18//
ż FKDU�EXIIHU���

&RPPHQWV�VXPPDU\

Ɣ 7KH�PRVW�SRSXODU�GDWD�W\SHV��LQFOXGLQJ�
18//�YDOXHV��DFURVV�WKH�)RU�ORRS�FODVVHV�
LQFOXGH�
ż XQVLJQHG�LQW
ż 18//
ż FKDU�EXIIHU
ż LQW
ż LVFBXLQW��BW
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GameRank  API  Methods  

def  add_outcome(realm_id,  user_id,  problem_id,  invariant_id,  d)  
This  adds  the  result  of  a  user  solution  on  a  problem.    Check  that  they  have  unique  user_id  and  
problem_id  that  we  can  use.    The  score  is  a  non-negative  (?)  (?  they  do  not  know,  probably  
non  negative)  floating  point  number,  reflecting  the  correctness  of  the  solution  proposed  by  the  
user.    No  special  assumption  is  made  on  these  solution  scores.    
Problem:  Do  the  user_id  and  problem_id  need  to  exist  already  on  our  side  or  not?    Yes  

Or  do  we  have  to  implement  create_user()  and  create_problem  methods?  No  

For  us,  the  main  use  of  a  create_user()  …  method  is  that  it  ensures  that  we  have  the  same  
basic  information  for  all  users,  since  we  cannot  guarantee  that  update_user_info  below  is  going  
to  be  called.    
d  is  a  dictionary  containing:  
This  data  is  available:  

● score  of  solution
● duration  of  solution  attempt
● gave_up:  boolean  flag  indicating  whether  a  solution  was  entered
● List  of  (start_time,  end_time)  of  all  time  spans  when  the  game  was  played  (note:  do  you

prefer  to  update  this  information  as  time  goes  by,  via  a  method  called
add_outcome_info?  No  -  Or  give  it  to  us  only  once  the  play  ends?  Yes).

● Platform  on  which  game  was  played  (phone,  tablet,  PC,  etc)
● Location  /  interactivity  level  info  (is  a  player  playing  in  a  stationary  room,  or  just  toying

with  it  in  a  bus?).    ?  not  surely  available
● played  in  a  tournament  or  in  collaboration:  not  sure  they  have  it  for  everyone

Questions:  do  they  give  us  an  invariant_id  or  do  they  call  add_outcome  and  we  return  an  
invariant_id?  They  give  it  to  us  
Do  we  have  to  give  methods  also  to  delete  an  outcome?  Or  delete  all  outcomes  for  a  problem?  
Yes  

def  delete_outcome(realm_id,  user_id,  problem_id,  invariant_id)  

def  delete_all_outcomes_for_problem  (realm_id,  problem_id)  

Or  for  a  player?  No  

Question:  should  we  have  a  single  reputation  system,  or  should  we  have  “realms”,  and  prefix  
every  call  with  a  realm_id?    We  need  a  testing  realm  and  a  production  realm,  at  least.  Ok  with  
these  2  realms  for  the  beginning.  If  we  need  more  reputation  systems,  e.g.  for  different  

skills,  we  can  have  more  realms.  

def  update_user_info(realm_id,  user_id,  d)  
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This  is  used  to  let  our  ranking  system  know  about  the  existing  level  of  a  user,  as  chosen  by  the  
game  system.    d  is  a  dictionary  of  things  that  can  be  changed  (only  the  changed  items  are  
defined)  :  

● Player  level  in  the  game
● Player  ability  in  a  scale,  as  defined  by  developers
● How  long  the  user  exists

def  update_problem_info(realm_id,  problem_id,  d)  
d  is  a  dictionary  containing:  

● Problem  level  as  defined  by  developers

def  get_latest_solution_date(realm_id)  
Returns  a  datetime  in  UTC.    
To  know  how  old  the  data  is  -  did  the  server  get  stuck,  or  is  it  fresh?  

def  get_user_info(realm_id,  user_id)  
Returns:    

● Datetime  in  UTC  of  when  the  solution  was  computed.
● User  rank  in  the  system,  as  percentile,  with  an  error  estimate.    Example:  10-15%  rank.
● Floating-point  rank,  with  no  special  semantics  attached,  except  that  it  gives  the  same

ordering  as  the  percentiles  above.
● N.  of  problems  the  user  played.

Not  necessary  to  be  provided  from  our  side  

(  

def  get_play_info(realm_id,  user_id,  problem_id)  

Returns:  

● The  score  of  the  play

● The  time  it  took  for  the  play

● The  time  when  the  play  took  place

● Play  level:  how  far  the  user  has  gone

def  get_user_problems(realm_id,  user_id)  

Returns  the  list  of  problems  the  user  played.  

def  get_problem_users(realm_id,  problem_id)  

Returns  the  list  of  players  that  played  a  given  problem.  

)  

def  get_problem_info(realm_id,  problem_id)  
Returns  (in  general,  return  a  dictionary):  

● Datetime  in  UTC  of  solution
● Rank  and  error  in  rank  of  problem  among  problems
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● N.  of  users  who  played  the  problem
● Average  rank  in  game  of  players  who  played  the  problem...
● How  many  players  gave  up
● Average  rank  of  players  who  gave  up...
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def  add_outcome(realm_id,  user_id,  problem_id,  invariant_id,  d)  
d:  

● score  of  solution
● duration  of  solution  attempt
● gave_up:  boolean  flag  indicating  whether  a  solution  was  entered
● List  of  (start_time,  end_time)  of  all  time  spans  when  the  game  was  played
● Platform  on  which  game  was  played  (phone,  tablet,  PC,  etc)

def  delete_outcome(realm_id,  user_id,  problem_id,  invariant_id)  

def  delete_all_outcomes_for_problem  (realm_id,  problem_id)  

def  update_user_info(realm_id,  user_id,  d)  
d:  

● Player  level  in  the  game
● Player  ability  in  a  scale,  as  defined  by  developers
● How  long  the  user  exists

def  update_problem_info(realm_id,  problem_id,  d)  
d:  

● Problem  level  as  defined  by  developers

def  get_latest_solution_date(realm_id)  

def  get_user_info(realm_id,  user_id)  
Returns:    

● Datetime  in  UTC  of  when  the  solution  was  computed.
● User  rank  in  the  system,  as  percentile,  with  an  error  estimate.    Example:  10-15%  rank.
● Floating-point  rank,  with  no  special  semantics  attached,  except  that  it  gives  the  same

ordering  as  the  percentiles  above.
● N.  of  problems  the  user  played.

def  get_problem_info(realm_id,  problem_id)  
Returns  (in  general,  return  a  dictionary):  

● Datetime  in  UTC  of  solution
● Rank  and  error  in  rank  of  problem  among  problems
● N.  of  users  who  played  the  problem
● Average  rank  in  game  of  players  who  played  the  problem...
● How  many  players  gave  up
● Average  rank  of  players  who  gave  up...
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CyphrSeedr Tutorial Design 

Document
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3

Overview

The aim of the CyphrSeedr tutorial is to introduce the basics of the game in a logical, 
coherent progression. The most important aspects of the game to be introduced here are the 
most basic invariants, which will reflect the more complex invariants that could be introduced 
in the game via "live" code, as well as the primary and secondary UI elements of the game.
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4

Concepts to Teach Within the Tutorial

1. Preliminary User Interface
a. How to use the slider & its representation
b. What each symbol (i.e., Height, Leaves) means & represents
c. How to use the toolkit/workspace

- The less-than tool <
- The greater-than tool >
- The equals tool =
- The plus tool +
- The minus tool -
- The constant tools 1, 100, 0, etc.
- The variable tools (symbols)
- The structures for the tools (Scratch-like templates)
- The recycling bin
- The trash (red?) button

d. The star scoring system

2. Secondary User Interface
a. The data overlay tools

3. Pattern finding for loop invariants
a. One variable changing in a constant way
b. One variable changing in a not-constant way
c. Two variables changing in a not-constant way (no relationship)
d. Two variables changing together in a constant way
e. Linear relationships between two variables

4. Different Data Structures
a. Simple integer relationships
b. One-dimensional arrays
c. Two-dimensional arrays
d. Linked lists with integer data
e. Linked lists with other data
f. Stacks
g. Queues
h. Trees
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Sample Levels
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Sample Level 1

Code Sample:
i = 1;
while (i < 5 && i > 0) {

i++;
}

Invariant(s):
1. i >= 1
2. i <= 5

Representation: 

i = Height,

= 1  = 2  = 3

Concepts to be Conveyed: Because this is the first level, it is necessary to introduce more 
than one basic concept; this will not be the case for the rest.

1. The slider & its representation
2. One variable changing in a constant way
3. The < and/or > and/or = tools
4. The variable tools

114
Approved for Public Release; Distribution Unlimited



7

Sample Level 2

Code Sample:
i = 10;
while (i > 0 && i < 15) {

i--;
}

Invariant(s):
1. i >= 0
2. i <= 15

Representation: 

i = Height,

= 10  = 9  = 8

Concepts to be Conveyed: 
1. One variable changing in a constant (but different) way.
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Sample Level 3

Code Sample:
i = 5;
while (i > 0 && i < 5) {

i = 5;
}

Invariant(s):
1. i = 5

Representation: 

i = Height,

= 5  = 5  = 5

Concepts to be Conveyed: 
1. The notion of a constant variable.
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Sample Level 4

Code Sample:
i = 1;
y = 1;
while (i > 0 && y > 0) {

i++;
y++;

}

Invariant(s):
1. i = y

Representation: 

i = Height,

y = Leaves, 

= 1  = 2  = 3

 = 1 = 2  = 3

Concepts to be Conveyed:
1. Two variables.
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Sample Level 5

Code Sample:
i = 1;
y = 0;
while (i < 5 && i > 0) {

i++;
y = 2i;

}

Invariant(s):
1. y = 2i
2. i < 5
3. i > 0
4. y > 0

Representation: 

i = Height,

y = Leaves, 

= 1  = 2  = 3

 = 2 = 4  = 6

Concepts to be Conveyed: 
1. Two variables changing in a different constant way.
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Sample Level 6

Code Sample:
i = 5;
y = 0;
while (i < 6 && i > 0) {

i--;
y ++;

}

Invariant(s):
1. i > 0

Representation: 

i = Height,

y = Leaves, 

= 5  = 4  = 3

 = 0 = 1  = 2

Concepts to be Conveyed: 
1. Two variables changing in a different constant way.
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Sample Level 7

Code Sample:
i = 0;
y = 0;
while (i < 5 && i > 0) {

i++;
y = i²;

}

Invariant(s):
1. y = i²
2. i < 5
3. i > 0

Representation: 

i = Height,

y = Leaves, 

= 3  = 2  = 1

 = 9 = 4  = 1

Concepts to be Conveyed: 
1. Negative numbers.
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Sample Level 8

Code Sample:
i = 0;
y = 0;
while (i < 5 && i > 0) {

y = 2i + 5;
i++;

}

Invariant(s):
1. y = 2i + 5

Representation: 

i = Height,

y = Leaves, 

= 0  = 1  = 2

 = 5 = 7  = 9

Concepts to be Conveyed: 
1. Polynomial relationships.
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Sample Level 9

Code Sample:
i = 1;
while (i < 5 && i > 0) {

i = 2i;
}

Invariant(s):
1. i = 2i

Representation: 

i = Height, 

= 1  = 2  = 4

Concepts to be Conveyed: 
1. One variable changing in a different constant way.
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Sample Level 10

Code Sample:
i = 1;
while (i < 5 && i > 0) {

i = 2i;
}

Invariant(s):
1. a[ i ] = i;

Representation: 
Array is a rhizomatous plant (a plant with multiple identical sprouts, or nodes, whose 
characteristics may vary).

a[ i ] = ith sprout's number of leaves, 

 i = 1

 i = 2

 i = 3

Concepts to be Conveyed:
1. Arrays

- New tool(s)
- Visual representation
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ABSTRACT
Invariant discovery is one of the central problems in software
verification. This paper reports on an approach that ad-
dresses this problem in a novel way; it crowdsources logical
expressions for likely invariants by turning invariant discov-
ery into a computer game. The game, called Binary Fission,
employs a classification model. In it, players compose pre-
conditions by separating program states that preserve or vi-
olate program assertions. The players have no special exper-
tise in formal methods or programming, and are not specifi-
cally aware they are solving verification tasks. We show that
Binary Fission players discover concise, general, novel, and
human readable program preconditions. This suggests that
crowdsourcing o↵ers a feasible and promising path towards
the practical application of verification technology.

1. INTRODUCTION
A key problem in software verification is to find abstrac-

tions that are su�ciently precise to enable the proof a de-
sired program property, but su�ciently general to allow an
automated tool to reason about the program. Various tech-
niques, such as predicate abstraction [2], interpolation [17],
logical abduction [7], and lately machine learning (e.g., [20,
25, 11]) have been proposed to automatically find such ab-
stractions by identifying suitable program invariants. Each
of these techniques provides its own approach for inventing
suitable predicates, but unfortunately, the space of possibil-
ities is essentially infinite and it is not currently possible to
find such predicates via automated methods.

The human process for finding invariants relies on highly
skilled people, schooled in formal methods, to reason from
the purpose of programs towards possible predicates. How-
ever, this approach has an issue of scale: millions of pro-
grams could benefit from formal verification, while there are
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only a few thousand such experts world-wide. Automated
methods rely on search, and expectations to constrain the
predicate invention process. White box techniques lever-
age knowledge about program content to propose candidate
invariants, while black box methods search a space of tem-
plates (often boolean functions of linear inequalities) using
comparatively little knowledge of program structure.

Recent work on classification techniques employ data to
constrain predicate invention. Here, the objective is to in-
duce a boolean expression over a base set of predicates that
admits “good” program states (inputs that satisfy desired
properties encoded as assertions) while excluding all “bad”
states (input that violates such assertions on execution).
Machine learning methods are well-suited to this task [11,
13, 21, 20]. These techniques output likely invariants that
can be tested by static or dynamic analysis methods to de-
termine if they are invariant conditions of the underlying
program. The key issue in this approach is generalization;
useful invariants are broad statements while classification
methods tend to overfit the data. Moreover, the data on
good and bad program states necessary to achieve robust
generalization is in short supply, as program sampling is it-
self a hard task.

This paper reports on a classification based system that
addresses predicate invention in a novel way; it crowdsources
logical expressions for likely invariants by turning invariant
generation into a computer game. This approach has several
potential benefits:

• It can take advantage of the human ability to extract
general predicates from small amounts of data,

• It makes predicate invention accessible to a much larger
pool of individuals,

• It allows the crowd to compose unexpected, likely in-
variants that fully automated methods might miss.

In more detail, the game, called Binary Fission, addresses
the subtask of precondition mining; it assumes a set of an-
notations that encode desired properties, and seeks predi-
cates that imply the annotations hold under program ex-
ecution. Players function as classification engines, by col-
lectively composing likely invariants without any awareness
that they are performing program verification.

Binary Fission is an instance of a growing number of
games with a purpose [4, 12, 23], which share the premise
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that many di�cult and important tasks can be advanced by
crowdsourcing [19]. As such, Binary Fission is an existence
proof for crowdsourcing precondition mining. This paper
also demonstrate that it is e↵ective. We show that:

• The crowd employs Binary Fission to compose likely
invariants for non-trivial programs.

• A subset of those preconditions are program invariants.

• The program invariants are non-trivial, reasonably gen-
eral, and human readable.

In addition, we show that the results of Binary Fission are
novel relative to the output of DTinv [13] (a related, fully
automated classification system).

The following sections describe our approach and results.
We begin by framing this e↵ort against related work, and
introducing Binary Fission. Section 4 introduces the do-
main program we examine for preconditions, and then dis-
cusses our methodology for assembling crowdsourced likely
invariants from player contributions, extracting program in-
variants from that set, assessing the quality of crowdsourced
results. Section 5 presents results obtained with Binary Fis-
sion. Section 6 discusses the source of power behind these
results, while Section 7 examines threats to validity. We end
with concluding remarks.

2. RELATED WORK
The problem of finding suitable program invariants is a

central part of formal verification research. Striking the bal-
ance between an abstraction that is su�ciently precise to
prove a property and su�ciently abstract to reason about
is what makes program analysis scalable. In static analy-
sis, a variety of techniques exist to infer program invariants,
such as CEGAR [2], Craig interpolation [17], or logical ab-
duction [7]. However, these approaches have the inherent
limitation that they rely on information generated from the
source code of the analyzed program. If the needed invari-
ant is a relation between variables that cannot be inferred
from the source code, these techniques must fall back on
heuristics or fail to compute an invariant.

As an alternative to static invariant discovery, we have
seen an increasing activity in research on data driven ap-
proaches. A pioneer in this field is Daikon [9, 8, 10] which
takes a set of good program states as input and applies ma-
chine learning to find an invariant that describes all states
in this set. More recently, several approaches [11, 13, 21,
20] have extended this idea by learning invariants applying
di↵erent machine learning algorithms and by also consider-
ing sets of bad states that should be excluded by a likely
invariant. The benefit of machine learning or data driven
approaches over static invariant discovery is that these ap-
proaches can search for invariants in a larger space and dis-
cover invariants even if they are based on relations that are
not easily inferred from the program text. This paper ex-
plicitly compares results obtained by Binary Fission with
results obtained through DTinv [13], which provides a clas-
sification model that is very close in spirit to our work.

Since Binary Fission is a crowdsourcing game, it can viewed
as a game with a purpose (GWAP) [24]. Since Binary Fis-
sion involves people performing work that computers cannot,
it can also be viewed as a form of human computation (see
[1] for design issues concerning motivation and evaluation

in this context, and [16] for a survey of crowdsourcing in
software engineering). Since Binary Fission uses a game re-
ward system to motivate players, it is a form of gamification
[6]. We view Binary Fission as a deeper application of game
design principles than typical in gamification e↵orts, as it
simultaneously makes a hard science problem playable, and
disguises the core activity more than typical human compu-
tation tasks.

Overall, the idea of building crowdsourced games for hard
scientific tasks has shown enough promise to motivate a large
investment in this area. Binary Fission was developed as
part of the Crowd Sourced Formal Verification (CSFV) pro-
gram, funded by DARPA in the United States. This pro-
gram has resulted in the creation of ten games focused on the
intersection with formal software verification; a summary of
the games developed in this program can be found in [5],
and many of the games can be played at verigames.com.

3. BINARY FISSION
Binary Fission is a game for crowdsourcing program in-

variants. It is one of several recent e↵orts designed to exploit
the “wisdom of the crowd” by transforming hard scientific
problems into games [4, 12, 23]. Binary Fission is intended
for players with no expertise in formal verification methods,
and the players are at most peripherally aware that they are
solving verification problems through game play.

The game employs a classification metaphor for finding
invariants. At the technical level, it inputs a program anno-
tated with postconditions, a set of predicates relating pro-
gram variables, and two sets of initial program states (each
state is a vector of variable values), where “good” states sat-
isfy the assertions, and “bad” states violate those assertions
on program execution. Each Binary Fission player employs
the available predicates to find a classification tree that sepa-
rates good data from bad. This tree defines a logical formula
representing a likely invariant.

At the game level, Binary Fission hides the nature of the
program, data, and predicates from the player. Instead, it
presents players with a set of gold and blue “quarks” (rep-
resenting good and bad data, internally), mixed together
inside the nucleus of an “atom.” The player’s goal is to sep-
arate the gold from the blue quarks using a set of filters
(corresponding internally to predicates), which are capable
of splitting the atom’s nucleus. Di↵erent filters create dif-
ferent splits, and the player’s job is to decide which filters to
apply, and in what order. The recursive application of filters
leads to the creation of a binary tree, as shown in Figure 1.

Binary Fission imposes a 5 level depth limit on player
generated classification trees, which bounds the complexity
of the resulting classifiers. The game also provides a scoring
function (shown in Equation 1) that influences players to
create leaf nodes composed purely of good, or bad program
states (where the pure good nodes have special utility for
defining likely invariants).

N ⇥
X

i2leaf nodes

⇣
purity

A
i ⇥ size

B
i

⌘
(1)

Here, purity is the maximum over the percentage of good
states and the percentage of bad states in the node, and size

is a count of the quarks (states) in the node. A and B are
arbitrary constants. N is constant that increases with the
count of pure nodes, and decreases with maximum depth of
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Figure 1: Binary Fission Player Interface

the classification tree. It influences players to produce as
many pure nodes as possible, as early as possible, which is
a force towards producing useful, and general descriptors.

Each classification tree produced through Binary Fission
is typically partial: some leaf nodes only contain good states,
some only contain bad states, while others contain a mix-
ture. In addition, the solutions are idiosyncratic, as the play-
ers generally employ di↵erent subsets of filters during game
play. As a result, the game software combines descriptions
of pure good nodes and pure bad nodes across solutions to
obtain a consensus view of the likely invariant. We discuss
this process below.

4. METHODOLOGY
Our methodology for crowdsourcing precondition discov-

ery repeats the following steps:

1. Express an invariant generation task as a data classi-
fication problem.

2. Present the problem to Binary Fission players.

3. Assemble a likely invariant across player solutions.

4. Extract clauses from the likely invariant that satisfy
program assertions.

5. Assess utility of the program preconditions found.

Following these steps, we assess the value added by crowd-
sourcing invariants by comparing the results with the so-
lutions produced via an automated classification technique,
called DTInv [13]. The following sections clarify these tasks,
after introducing the domain problem we employ as a source
of invariant generation tasks.

4.1 The TCAS Program
TCAS is an aircraft collision avoidance software originally

created at Siemens Corporate Research in 1993. It has be-
come a common subject to verification methods and test
case generation systems since being incorporated into the
Software-artifact Infrastructure Repository [18]. The code
performs algebraic manipulations of 12 integer variables and

a constant four element array. It contains nested condition-
als and logical operators; there are no loops, dynamic mem-
ory allocations or pointer manipulation.

TCAS is written in 173 lines of C code split into nine
functions. As shown by the call graph in Figure 2, the main
function calls an initialization routine before transferring
control to alt_sep_test, which tests the altitude separation
between an aircraft and intruder that has entered its pro-
tected zone. TCAS then generates warnings, called “Tra�c
Advisories’ (TAs), and recommendations, called“Resolution
Advisories” (RAs), to the pilot. The TAs alert the pilot of
potential threats, while the RAs are proposed a maneuver
meant to safely increase the separation between planes.

Figure 2: TCAS call graph.

A theory for avoiding aircraft collisions determines when
certain maneuvers are safe; these conditions identify safety
properties that the TCAS implementation should ideally
guarantee. Table 1 illustrates some of these safety proper-
ties (reproduced from [3]). For example, the last two entries
specify that a maneuver that reduces the separation between
two planes must never be issued when the planes have in-
truded into each others’ protected space. These safety prop-
erties can be encoded as postconditions of the TCAS pro-
gram, via assertion statements at its end. The problem of
proving the TCAS program safe translates into the task of
verifying that the implementation cannot violate these as-
sertions.

We tackle a subtask of the verification process, which is,
to find suitable preconditions for TCAS functions. Func-
tion preconditions are conditional statements about program
variables; if they hold on input to the function, program ex-
ecution is guaranteed to produce the postconditions that
encode desired properties.

4.2 Framing Binary Fission Problems
We define seven precondition finding tasks from the TCAS

code. They are to discover preconditions for each of the func-
tions alt sep test, Non Crossing Biased Climb, Non Crossing
Biased Descend, Own Below Threat, Inhibit Biased Climb
and Own Above Threat as shown in Figure 2, where those
preconditions ensure the conjunction of program postcondi-
tions illustrated in Table 1.

We express these problems as Binary Fission classification
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Postcondition Explanation
If Up_Separation � Positive_RA_Alt_Thresh[2] ^ A downward RA is never issued if a downward

Down_Separation < Positive_RA_Alt_Thresh[2] maneuver does not produce adequate separation
Assert result 6= need_Downward_RA

If Up_Separation < Positive_RA_Alt_Tresh[2] ^ An upward RA is never issued if an upward
Down_Separation � Positive_RA_Alt_Tresh[2] maneuver does not produce adequate separation

Assert result 6= need_Upward_RA

If Own_Tracked_Alt > Other_Tracked_Alt A crossing RA is never issued
Assert result 6= need_Downward_RA

If Own_Tracked_Alt < Other_Tracked_Alt A crossing RA is never issued
Assert result 6= need_Upward_RA

If Down_Separation < Up_Separation The RA that produces less separation is never issued
Assert result 6= need_Downward_RA

If Down_Separation > Up_Separation The RA that produces less separation is never issued
Assert result 6= need_Upward_RA

Table 1: TCAS postconditions.

tasks by specifying {good states, bad states, predicates}
tuples. We obtain the state data by running a large set
of test cases on the underlying program and monitoring its
execution with a debugger. The TCAS repository supplies
test cases with the code. We collect the program state at the
entry point of each function, and monitor the program’s exit
status. If the input state satisfies end assertions we add that
vector of program variables to the good states. If it violates
assertions or causes the program to crash, we add it to the
set of bad states. We augment these states by randomly
sampling the variable ranges observed in the program test
cases, after validating with gcov [22] that the new values
exercise the same code paths. We retain these states in a
hold-out set for testing the generality of any preconditions
found, and do not present them to players.

Binary Fission can utilize logical predicates of any kind,
obtained from any source, with the caveat that they need to
be relevant to the classification task at hand in order to be
useful. Because TCAS performs algebraic manipulations, we
generate a base set of predicates by employing the Daikon
system [10], which is able to explain regularities in program
states by searching a library of structural forms. In partic-
ular, we supply Daikon with a small subset of good TCAS
program states (and separately, a small set of bad states),
and collect the candidate invariants it produces. For TCAS,
this set consists of several hundred boolean combinations of
equalities and inequalities among linear functions of 1-4 vari-
ables, including max and min operators, numeric thresholds,
and explicit set membership tests.

We present each of the {good states, bad states, predicates}
tuples generated in this way to multiple Binary Fission play-
ers who generate preconditions as a byproduct of game play.
Binary Fission is available on-line at http://binaryfission.
verigames.com, and we invite readers to try it. To date,
close to one thousand players have generated about three
thousand solutions for TCAS problems.

4.3 Assembling a Likely Invariant
Each classification tree generated by a Binary Fission player

separates program states into a collection of Pure Good,
Pure Bad, and Impure nodes (where a Pure node only con-
tains program states of one kind). As shown in Figure 3,
a conjunction of predicates that links the root to a Pure
Good node describes a set of states that satisfy program

assertions, and expresses a likely invariant. A single player
solution can contain several such paths. By extension, we
define the disjunction of paths to Pure Good nodes across
all player solutions as the consensus, likely invariant. This
results in an expression in Disjunctive Normal Form:

PureGoodConjunct

1

_ ... _ PureGoodConjunctn

Note that the individual conjuncts might be drawn from the
same or di↵erent classification trees. As a result, the con-
juncts might not employ the same variables, or be mutually
exclusive either as logical statements or in terms of the data
they explain.

It is tempting to employ the negation of predicates de-
scribing Pure Bad nodes across players instead, since an in-
variant that excludes Pure Bad states is potentially weaker,
and more desirable than an invariant that explicitly admits
only good states. However, given a partial classifier, the
logical expression ¬(PureBadConj

1

_ ..._PureBadConjm)
includes Impure nodes, and accepts bad states that cannot
be admitted by any invariant.

Figure 3: Example of a decision tree produced by

Binary Fission. Tracing from the root node to the

two pure positive nodes we have P ^ Q and ¬P ^ R

which form the candidate invariant (P ^Q)_(¬P ^R).

4.4 Extracting Program Invariants
Given a likely invariant expressed in DNF, we use the

CBMC bounded model checker [14] to identify any compo-
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nent conjuncts that qualify as program preconditions. That
is, if c

1

_ c

2

_ ... _ cn is a predicate derived from data
points from function my_func, we consider each clause ci for
i 2 {1, 2, ..., n} in turn. We place a check of its negation at
the entry of the function as shown on line 2 of Figure 4. We
then run CBMC on this modified program. When CBMC

1 my_func(args) {
2 if !(c_i) { exit (0) }
3 // Remainder of the function ...
4 }
5
6 my_func(args)
7 assert(postcondition)

Figure 4: Pseudocode showing program transforma-

tion for discovering function preconditions.

encounters the if-statement, it splits the analysis between
the two paths. The path in which ci is falsified dies when
it encounters exit(0). On the other hand, when ci is satis-
fied, the analysis continues and the model checker attempts
to find function arguments args that will later cause post-
condition violations (line 7 of Figure 4). If CBMC cannot
find inputs that satisfy ci and violate the postconditions,
then ci is a precondition of the function. The full Binary
Fission invariant is the disjunct of all clauses that satisfy
this test.

4.5 Assessing Invariant Utility
Assuming Binary Fission players discover likely invariants

and program preconditions, the next key concern is to eval-
uate the usefulness of those expressions. We would like to
show that crowdsourced results enable further derivation of
program properties, or facilitate practical application of the
code. We do not yet have that result for Binary Fission.
Instead, we assess the generality of the crowdsourced ex-
pressions by measuring their coverage against data. The
more data explained, the weaker the likely invariant or pre-
condition, and the more utility it o↵ers for further analyses.

Binary Fission relies on a classification technique to sepa-
rate good states from bad. However, classification methods
are prone to overfitting; they must guard against the ten-
dency to explain exactly and only the training data, with-
out providing insight into the general case represented by
the data not seen. Common defenses include penalizing
overly complex expressions considered during classification,
and testing against held back data to ensure the generality
of the induced function. We utilize both techniques here.
In particular, we rely on the Binary Fission scoring function
and depth limit to prevent overfitting, and we distinguish
training data from test sets.

In more detail, we measure expression generality against
a set composed of Good program states. To increase the
amount of data available, we interpolate between good states
supplied with the TCAS code, and ensure that new states
exercise the same code paths as the original states. We
measure coverage of likely invariants against the training
set, and coverage of preconditions against this new data,
which comprises the test set.

4.6 Assessing Invariant Novelty
In addition to assessing the utility of any invariants found,

we examine the conjecture that crowdsourced invariants are
novel relative to the results obtained through other meth-

ods. If they are novel, it is an indication that crowdsourcing
brings some special leverage to the task, and we can analyze
the source of that power.

We assess novelty by comparing Binary Fission results
against the output of the DTinv system [13], which is a
fully automated classifer. Many invariant learners now ex-
ist, but DTinv is possibly the closest in spirit to our work.
Like Binary Fission, DTinv builds a decision tree from good
and bad program states (that preserve or violate end asser-
tions), plus a set of primitive predicates that relate program
variables. The key di↵erences are that DTinv builds its own
predicates from a basis set of planar cuts using the octagon
abstract domain (vs importing an arbitrary predicate set),
and it constructs decision trees of arbitrary depth that per-
fectly classify the data into Pure Good and Pure Bad sets (vs
the partial classifiers of bounded depth produced by Binary
Fission).

We apply DTinv to each of the TCAS problems given to
Binary Fission players, and we compare the resulting likely
invariants for legibility, generality in terms of data coverage,
and veracity as program preconditions. To make the com-
parisons fair, we pre-process the TCAS code to represent
arrays (which DTinv cannot currently consume) as separate
variables. In addition, rather than test the DTinv solution as
a whole for its status as a program precondition, we trans-
form it into Disjunctive Normal Form and test individual
disjuncts as candidate preconditions via the CBMC model
checker. This approach is symmetric with our examination
of disjuncts describing Pure Good nodes in the partial clas-
sifiers output by Binary Fission.

We compare the generality of the likely invariants and
preconditions found by measuring their coverage of program
states, as before.

5. BINARY FISSION RESULTS
Following the methodology described in the previous sec-

tion, we collected crowdsourced solutions for the seven TCAS
problems identified in Section 4.2. For purposes of illustra-
tion, we discuss the solution for the TCAS function Non
Crossing Biased Descend in detail, and then summarize across
the remaining six examples. We discuss the structure and
coverage of the likely invariants found, we identify the valid
program preconditions, and we evaluate the generality and
data covered by these results. We assess novelty through
comparison of the Binary Fission and DTinv solutions for
the same problem.

5.1 Likely Invariants for TCAS Problems
The consensus solution for Non Crossing Biased Descend

has 398 disjunctive clauses that represent the Pure Good
nodes found across Binary Fission players. Each clause is
a likely crowdsourced invariant. Figure 5 illustrates the
top three, measured by their coverage over program states.
Their content is syntactically similar; each clause is a con-
junct of 2-3 primitive predicates (shown as top-level ANDs),
where the primitives express numeric equalities and inequal-
ities over multiple TCAS variables. These are non-trivial
statements about domain variables, and they appear rea-
sonably general; they clearly do not pick out specific data
values. Following the methodology described in Section 4.5,
we measure the generality of these expressions by their cov-
erage of the training data; they each explain circa 30% of the
good program states. The three likely invariants also appear
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(not(Other_Capability > Two_of_Three_Reports_Valid))
and (not(Down_Separation != Positive_RA_Alt_Thresh[Alt_Layer_Value ]))

(not(Down_Separation != Positive_RA_Alt_Thresh[Alt_Layer_Value ]))
and (( Alt_Layer_Value <= size(Positive_RA_Alt_Thresh)-1))

(not(Alt_Layer_Value >= Up_Separation))
and (not(Down_Separation != Positive_RA_Alt_Thresh[Alt_Layer_Value ]))
and (( Cur_Vertical_Sep != Positive_RA_Alt_Thresh[Alt_Layer_Value ]))

Figure 5: The best three likely invariants measured by Good state coverage.

to be describing a similar truth, as they utilize many of the
same variables and terms. As a result, they can describe
many of the same states.

The solutions for all seven TCAS problems have a similar
structure. Table 2 shows that they contain between 262 and
704 clauses. These solutions are simple collections, and have
not been simplified; they can overlap both logically and in
terms of the data covered, and their number strictly grows
with the quantity of game play.

5.2 Crowdsourced Solution Progress
Figure 6 illustrates the crowd’s progress towards finding

a consensus likely invariant. It plots cumulative data ex-
plained by the crowdsourced solution, as accumulated in de-
creasing order of predicate quality (i.e., the number of good
program states recognized by the conjunctive predicate as-
sociated with each Pure Good node). This figure supports
several interesting observations. First, the top 20% of the
solutions explain 80% of the data, and this pattern repeats
across all TCAS problems. This suggests a statistical regu-
larity in crowd performance, and an uneven distribution of
expertise across players. Second, the consensus solution is
partial, meaning it fails to explain all the data even after in-
corporating every player’s contribution. This is an expected
result, as Binary Fission limits the depth of player classi-
fication trees – some truths are simply hard to express in
bounded space.

In order to investigate this point further, we employed a
greedy search algorithm to construct a classifier for the same
problem, over the same primitive predicates. The method
used average impurity for scoring splits. When invoked with
a depth limit of 5, the resulting partial classifier explained
21 good program states. This splitting metric clearly pro-
vided insu�cient motivation to distinguish Pure Good nodes
early in the classification process that have utility for invari-
ant generation. In contrast, the reward metric employed
by Binary Fission clearly influenced players to isolate Pure
Good nodes at shallower depths, with the associated benefit
for explaining good program states. This pattern repeated
across TCAS problems.

We also tested the expressive power of the primitive Bi-
nary Fission predicates by invoking the greedy classification
algorithm without a depth limit. The result here, and in all
7 TCAS problems, was that the predicates had the power to
correctly separate all good program and bad program states.
As a result, our statistics on Binary Fission solutions con-
cern the performance of the crowd, not the expressivity of
the predicates at their disposal.

5.3 Program Preconditions Found
We tested the likely invariants generated for Non Cross-

ing Biased Descend using the CBMC model checker as dis-

Figure 6: Crowd progress in classifying data points

from Non_Crossing_Biased_Descend

cussed in Section 4.4. Of the 398 clauses supplied by play-
ers, 16 qualified as program preconditions. That is, if any
of these preconditions hold on function entry, the postcon-
ditions described in Table 1 hold at program exit. Figure 7
lists the three most general preconditions found, ordered
by their coverage over the test set of good program states.
These are the first instances of program invariants found by
crowdsourced methods. As with the likely invariants, these
preconditions are non-trivial statements about domain vari-
ables, here relating the positions and capabilities of aircraft
in the sky. For example, the first/best precondition in Fig-
ure 7 states that advising a pilot to descend (the function of
Non Crossing Biased Descend) will satisfy safety assertions
when (a) the other plane’s altitude is higher, but (b) advis-
ing the pilot to climb will result in a vertical separation (up
separation) that is less than the required tolerance.

Binary Fission players collectively found program precon-
ditions for 6 of the 7 TCAS tasks. None were trivial. Table 2
identifies the quantity of preconditions found for each task,
and the numbers are substantial.

5.4 Invariant Generality
Following the methodology described in Section 4.5, we as-

sess the generality of the crowdsourced preconditions found
by measuring their coverage over good program states in
the test set. Table 3 counts the number of program states
explained by for the seven TCAS problems. The best-case
scenario is for the precondition to accept all good states. In
the case of Non Crossing Biased Descend, the aggregate pre-
condition (composed of the 16 clauses reported in Table 2)
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(not(Other_Tracked_Alt > Own_Tracked_Alt))
and (Up_Separation < Positive_RA_Alt_Thresh[Alt_Layer_Value ])

(Other_Tracked_Alt > Positive_RA_Alt_Thresh[Other_Capability ])
and (Down_Separation >= Up_Separation)
and (not(Up_Separation <= Positive_RA_Alt_Thresh[Alt_Layer_Value ]))
and (Other_Tracked_Alt > Own_Tracked_Alt)

(not(Other_Capability == 2))
and (not(( Down_Separation == 800) or (Down_Separation == 600)

or (Down_Separation == 500)))
and (Down_Separation != Positive_RA_Alt_Thresh[Alt_Layer_Value ])
and (not(Other_Tracked_Alt > Own_Tracked_Alt))
and (Up_Separation < Positive_RA_Alt_Thresh[Alt_Layer_Value ])

Figure 7: The three best crowdsourced preconditions found.

Precon- Clauses
Function ditions from BF
ALIM 45 422
alt sep test 103 462
Inhibit Biased Climb 7 262
Non Crossing Biased Climb 14 360
Non Crossing Biased Descend 16 398
Own Above Threat 0 500
Own Below Threat 6 704

Table 2: Quantity of Crowdsourced Preconditions

and Likely Invariants: A fraction of the likely in-

variants qualify as program preconditions.

Good Total
Function states states %
ALIM 51 95 53.7%
alt sep test 424 2000 21.2%
Inhibit Biased Climb 59 295 20.0%
Non Crossing Biased Climb 60 295 20.3%
Non Crossing Biased Descend 108 295 36.6%
Own Above Threat 0 161 0%
Own Below Threat 0 185 0%

Table 3: Testing preconditions’ generality by com-

paring the number of good states accepted versus

the total number of good states in the held-out test

set.

explains 36.6% of the good program states withheld during
the classification task. This corresponds to 2.3% of the good
states per precondition clause on average, although the dis-
tribution was uneven. Figure 7 shows the best three precon-
ditions for this problem. The first explained 53% of the data,
while the second and third best preconditions captured 37%
and 26% of the program states in the test set respectively.
The net result is that the crowd discovers multiple program
preconditions with noteworthy coverage/generality.

5.5 Novelty Relative to the DTinv Solution
As discussed in Section 4.6, we compare the Binary Fis-

sion and DTinv solutions for each TCAS problem in order
to examine the conjecture that the crowd provides novel in-
sight in the search for program invariants. We compare the
legibility and coverage of the likely invariants they produce,
as well as their ability to discover program preconditions.

In its raw form, the DTinv solution for Non Crossing Bi-

ased Descend is a depth 15 decision tree containing 65 prim-
itive predicates that completely segments the good and bad
program states. The corresponding logical expression is not
human readable (nor was it intended to be). We converted
this form to DNF to extract less monolithic likely invariants,
and show the top three clauses (as measured by the number
of Good states covered) in Figure 8.

It is immediately obvious that these expressions rely heav-
ily on numeric thresholds. As mentioned earlier, this is by
design, as DTinv’s primitive predicates represent planar cuts
in the octagon domain. Although it is an aesthetic judg-
ment, this design appears to make the DTinv statements
harder to interpret than the Binary Fission output in Fig-
ure 5.

Of the three DTinv expressions in Figure 8, the second
overlaps the first, and the third is a specialization of the
second. They cover 29%, 16%, and 11% of the Good pro-
gram states, respectively. It is worth noticing that the single
best likely invariant found by crowdsourcing (Figure 5) and
the DTinv classifier have essentially identical capture, and
that the top three employ the same variable set, though in
notably di↵erent formulas. This is an indication that both
systems are after similar insights.

We tested the DTinv solution for Non Crossing Biased
Descend using the CBMC model checker to determine if
it contained valid program preconditions. The surprising
conclusion is that it did not, either as a whole, or when
we tested individual DNF clauses. This pattern repeated
across all seven TCAS problems; none of the DTinv solutions
contained valid preconditions. In contrast, the crowd, acting
through Binary Fission, produced preconditions for 6 of the
7 TCAS problems. As a result, the crowdsourced solutions
are clearly novel relative to the DTinv output.

The cause for the lack of DTinv-based preconditions ap-
pears to be overfitting; numeric thresholds induced from
data are highly likely to break in the presence of a hold-
back set, and the lengthy expressions DTinv discovers to
explain all the training data have limited opportunity to
generalize. In contrast, the more abstract predicate base
and 5 conjunct limit imposed by Binary Fission essentially
forces players to paint with a broader brush. Players can
only produce shorter, more powerful statements, some of
which generalize, as shown above.

6. DISCUSSION
This paper has addressed the problem of crowdsourcing

program preconditions, under the model that crowdsourc-
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(not(2* Positive_RA_Alt_Thresh [0] + 2* Down_Separation <= 1472))
and (2* Up_Separation -2* Alt_Layer_Value <= 801)
and (2* Alt_Layer_Value -2* Down_Separation <= -799)
and (2* Alt_Layer_Value + 2* Two_of_Three_Reports_Valid <= 9)

(not(2* Positive_RA_Alt_Thresh [0] + 2* Down_Separation <= 1472))
and (not(2* Up_Separation -2* Alt_Layer_Value <= 801))
and (not(2* Up_Separation -2* Down_Separation <= -1))
and (not(2* Own_Tracked_Alt -2* Other_Tracked_Alt <= -1203))
and (not(2* Own_Tracked_Alt_Rate + 2* Up_Separation <= 1594))
and (2* Alt_Layer_Value + 2* Other_Capability <= 5)

(not(2* Positive_RA_Alt_Thresh [0] + 2* Down_Separation <= 1472))
and (not(2* Up_Separation -2* Alt_Layer_Value <= 801))
and (not(2* Up_Separation -2* Down_Separation <= -1))
and (not(2* Own_Tracked_Alt -2* Other_Tracked_Alt <= -1203))
and (not(2* Own_Tracked_Alt_Rate + 2* Up_Separation <= 1594))
and (not(2* Alt_Layer_Value + 2* Other_Capability <= 5))
and (2* Other_Tracked_Alt -2* Down_Separation <= 95)
and (not(2* Two_of_Three_Reports_Valid + -2* Positive_RA_Alt_Thresh [3] <= -1481))
and (not(2* Cur_Vertical_Sep + 2* Other_Tracked_Alt <= 1906))

Figure 8: The top three DTinv likely invariants.

ing o↵ers an alternate, and viable method for addressing a
di�cult task. We have provided an existence proof in the
form of the Binary Fission game, and we have shown that
crowdsourcing is e↵ective by employing the game to discover
program preconditions for 6 TCAS problems. The precon-
ditions are non-trivial, reasonably general (as measured by
data coverage on a test set), and human readable. They
are also novel, at least with respect to the output of DTinv,
which finds likely invariants that do not qualify as program
preconditions.

There are three sources of power behind Binary Fission: it
employs an expressive representation, it relies on the crowd
to conduct a thorough search, and the game imposes re-
strictions on that search that select for general solutions. In
more detail, the representational power comes from Daikon,
as Binary Fission inputs the highly structured predicates it
produces. The game exploits crowd search by collecting and
testing the large number of piecewise solutions that players
contribute. The game influences the shape of the solution by
limiting classifier depth, and by rewarding discovery of par-
tial classifiers that isolate positive data, which has special
utility for invariant construction.

While Binary Fission employs a classification model, im-
proving classification technology is not our goal. Our main
point is to introduce crowdsourcing as a promising approach
to invariant discovery. From this perspective, the key con-
jecture behind crowdsourcing is that many non-expert in-
dividuals have the desire and ability to provide insight into
highly technical problems when they are presented in a suit-
able form. This conjecture holds for Binary Fission. If it
generalizes, related games will provide leverage on additional
verification tasks, and crowdsourcing will o↵er an avenue for
expanding the reach of verification technology.

7. THREATS TO VALIDITY
This paper reports first results from a crowdsourced ap-

proach to precondition discovery. As mentioned above, the
key points are that crowdsourcing is feasible, e↵ective, and
promising as a practical avenue for expanding the reach of
verification methods. That said, there are several threats
to the validity of these claims, as well as our more detailed

results.
First, while crowdsourcing finds preconditions on TCAS,

the approach may not generalize to more complex programs.
In particular, TCAS is a short, straight line, arithmetic pro-
gram that lacks pointers, loops, complex data structures,
and a range of other language features that complicate the
verification task. The counterpoint is that Binary Fission
is agnostic to the structure of the underlying program, be-
cause it formulates precondition discovery as classification.
The limits on its use come from the need for inputs common
to classifiers; a base of relevant primitive predicates, and la-
beled data distinguishing bad program states from good. It
is true that these inputs are hard to provide for more com-
plex programs (especially the predicate base and assertion
violating program states) as they are the product of deep
analyses of program structure. However, Binary Fission is
also agnostic as to the source of these data, which greatly
increases its avenues for application.

Second, our results on the novelty of the Binary Fission
solution could be the product of our choice of DTinv as the
comparator. This is quite plausible; the likely invariants
produced by other machine learning methods might qual-
ify as preconditions. However, our experience with Binary
Fission has illuminated constraints that should be applied
to the use of classifiers for this task; they should penalize
solution size (which is common wisdom), employ a powerful
predicate base to support human legibility of the end result,
and reward identification of pure good nodes rather than
focus on an entropic measure as the splitting criterion.

A third, and broader concern, is that classification is vi-
able but our use of crowdsourcing is superfluous, meaning
that Binary Fission can be replaced by a suitable automated
method. This argument is relevant at this stage in the devel-
opment of Binary Fission, but it devolves to the underlying
question, “What does the crowd bring to classification that
is di�cult to automate?”. In the case of FoldIt [4] players
brought spatial intuition to the task of folding complex pro-
teins, and obtained results never achieved through search
over molecular conformations in combination with energy
minimization methods. Classification tasks also have a nat-
ural framing as search, and by analogy, the crowd may intuit
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which predicates to employ en route to a more general solu-
tion. Binary Fission currently hides a bit too much informa-
tion to support this type of intuition (in service of broaden-
ing the game’s appeal), but advanced versions will provide
more context about the underlying task. We currently rely
on the crowd to explore unexpected places relative to the
greedy search conducted by automated methods, and this
approach has successfully produced program preconditions.

A final, and related argument is that Binary Fission ad-
dresses the wrong crowdsourcing problem. Rather than ask
the crowd to combine primitive predicates, we should un-
leash them on the task of inventing the predicates them-
selves. This step seems natural as predicate invention (in-
cluding predicate abstraction from data) is a critical, but
elusive process currently performed by people. We have, in
fact, developed a game for this task, called Xylem [15], and
it is available on-line at xylem.verigames.com.

8. CONCLUSION
We have employed Binary Fission, a crowdsourced game

for invariant discovery, to analyze the implementation of an
on-board aircraft collision detection and avoidance system.
We have shown that the crowd can employ Binary Fission
to prove program properties. They find function precondi-
tions (statements about program variables associated with
function inputs) that guarantee important safety properties
hold on program exit, where those properties are encoded
as postconditions. Binary Fission players discover concise,
general, and human readable preconditions, which are also
novel relative to the complicated logical expressions often
produced by other classifications systems. The players have
no special expertise in formal methods or programming, and
are not specifically aware they are solving verification tasks.

Binary Fission demonstrates the feasibility of crowdsourced
invariant discover, and it illustrates the promise of crowd-
sourcing for other verification tasks. This suggests a path-
way for expanding the reach, and practical application of
verification technology.
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AFRL Air Force Research Laboratory
API Application Program Interface
Astree Static Program Analyzer for C Programming
BIND Berkeley Internet Name Domain
C1 CHEKOFV Phase 1
C2 CHECOHV Phase 2
CFS CHEKOFV Facilitate Server
CRS CHEKOHV Ranking System
CS Citizen Scientist
CS Computer Science
CSFV Crowd Sourced Formal Verification
CWE Common Weakness Enumeration 
DA Dynamic Analysis
Daikon Machine Learning Tool
DARPA Defense Advanced Research Projects Office
DB Database
DIInv Machine Learning Tool
FB FaceBook
FRAMA-C Framework for Modular Analysis of C Programs
GS Game Subsystem
HAS Heavyweight Static Analysis
IFF Identify Friend or Foe
LSA Lightweight Static Analysis
MC Software Model Checking
MCMC Markov Chain Monte Carlo
mloc Million Lines of Code
PA Predicate Abstraction
SQL Structured Querry Language
SV-COMP A Competition for Software Verification
T C TopCoder (Now Appirio)
TP Theorem Prover
VF Verification Framework
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